×

Global dynamics of non-smooth Filippov pest-natural enemy system with constant releasing rate. (English) Zbl 1470.92397

Summary: Modelling integrated pest management (IPM) with a threshold control strategy can be achieved with a non-smooth Filippov dynamical system coupled by an untreated subsystem and a treated subsystem which includes chemical and biological tactics. The releasing constant of natural enemies related to biological control generates the complex dynamics. Comprehensive qualitative analyses reveal that the treated subsystem exists with transcritical, saddle-node, Hopf and Bogdanov-Takens bifurcations, for which the threshold conditions and bifurcation curves are provided. Further, by applying techniques of non-smooth dynamical systems including the Filippov convex method and sliding bifurcation techniques, we first obtain the sliding dynamic equation, and then we analyze the existence and stability of regular/virtual equilibria, pseudo-equilibria, boundary equilibria, sliding segments and sliding bifurcations. In particular, if we choose the economic threshold (ET) as the bifurcation parameter, then interesting dynamical behaviors, including boundary equilibrium \(\rightarrow\) pseudo-homoclinic \(\rightarrow\) touching \(\rightarrow\) buckling \(\rightarrow\) crossing bifurcations, occur in succession. It is interesting to note that although the number of pests in the untreated subsystem could increase and exceed the economic injury level (EIL), the final size could be less than ET and stabilizes at a relative low level due to side effects of the pesticide on natural enemies. However, the side effects can be effectively avoided by increasing the releasing constant, which can maintain the number of pests below the EIL always and thus achieve the control purpose.

MSC:

92D45 Pest management
34C23 Bifurcation theory for ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] M. E. M. Meza, A. Bhaya and E. Kaszkurewicz, Threshold policies control for predator-prey systems using a control Liapunov function approach, Theor. Popul. Biol., 67 (2005), 273-284. · Zbl 1072.92054
[2] M. I. D. S. Costa and M. E. M. Meza, Application of a threshold policy in the management of multispecies fisheries and predator culling, Math. Med. Biol., 23 (2006), 63-75. · Zbl 1111.92057
[3] S. C. M. Da, Harvesting induced
[4] S. Y. Tang and R. A. Cheke, Models for integrated pest control and their biological implications, Math. Biosci., 215 (2008), 115-125. · Zbl 1156.92046
[5] S. Y. Tang and L. S. Chen, Modelling and analysis of integrated pest management strategy, Discrete Contin. Dyn-B, 4 (2012), 759-768. · Zbl 1114.92074
[6] S. Y. Tang and R. A. Cheke, State-dependent impulsive models of integrated pest management (IPM) strategies and their dynamic consequences, J. Math. Biol., 50 (2005), 257-292. · Zbl 1080.92067
[7] G. Y. Tang, W. J. Qin and S. Y. Tang, Complex dynamics and switching transients in periodically forced Filippov prey-predator system, Chaos, Solitons & Fractals, 61 (2014), 13-23. · Zbl 1348.92133
[8] A. L. Wang, Y. N. Xiao and R. Smith, Using non-smooth models to determine thresholds for microbial pest management, J. Math. Biol., 78 (2019), 1389-1424. · Zbl 1414.34039
[9] M. I. D. S. Costa and L. D. B. Faria, Integrated pest
[10] L. M. Wang, L. S. Chen and J. J. Nieto, The dynamics of an epidemic model for pest control with impulsive effect, Nonlinear Anal-Real, 3 (2010), 1374-1386. · Zbl 1188.93038
[11] R. Mu, A. R. Wei and Y. P. Yang, Global dynamics and sliding motion in A(H7N9) epidemic models with limited resources and Filippov control, J. Math. Anal. Appl., 477 (2019), 1296-1317. · Zbl 1418.92183
[12] M. Biák, T. Hanus and D. Janovská, Some applications of Filippov’s dynamical systems, J. Comput. Appl. Math., (2013), 132-143. · Zbl 1295.34054
[13] F. Dercole, A. Gragnani, Y. A. Kuznetsov, et al., Numerical sliding bifurcation
[14] F. Dercole and Y. A. Kuznetsov
[15] Y. X. Chen and L. H. Huang, A Filippov system describing the effect of prey refuge use on a ratio-dependent predator-prey model, J. Math. Anal. Appl., 2 (2015), 817-837. · Zbl 1321.34060
[16] J. W. Qin, X. W. Tan, X. T. Shi, et al., Dynamics and bifurcation analysis of a Filippov predator-prey ecosystem in a seasonally fluctuating environment, Int. J. Bifurcat. Chaos, 29 (2019). · Zbl 1414.34036
[17] S. Y. Tang, G. Y. Tang and W. J. Qin, Codimension-1 sliding bifurcations of a Filippov pest growth model with threshold policy, Int. J. Bifurcat. Chaos, 24 (2014), 1450122. · Zbl 1302.34072
[18] S. Y. Tang, J. H. Liang, Y. N. Xiao, et al., Sliding bifurcations of Filippov two stage pest control models with economic thresholds, SIAM J. Appl. Math., 72 (2012), 1061-1080. · Zbl 1256.34038
[19] J. H. Frank, M. P. Hoffman and A. C. Frodsham, Natural enemies of vegetable insect pests, Fla. Entomol., 76 (1993), 531.
[20] D. J. Greathead, Natural enemies of tropical locusts and
[21] J. C. Van Lenteren and J. Woets, Biological and integrated pest control in greenhouses, Ann. Rev. Entomol., 33 (1988), 239-269.
[22] J. C. Van Lenteren, Measures of success in biological control of arthropods by augmentation of natural enemies, Measures of Success in Biological Control, 3 (2000), 77-89.
[23] Y. A. Kuznetsov, S. Rinalai and A. Gragnani, One-parameter bifurcations in planar Filippov systems, Int. J. Bifurcat. Chaos, 13 (2003), 2157-2188. · Zbl 1079.34029
[24] F. Dercole, A. Gragnani and S. Rinaldi, Bifurcation analysis of piecewise smooth ecological models, Theor. Popul. Biol., 72 (2007), 197-213. · Zbl 1123.92035
[25] K. Gupta and S. Gakkhar, The Filippov approach for predator-prey system involving mixed type of functional responses, Differ. Eq. Dyn. Syst., (2016), 1-21.
[26] M. Antali and G. Stepan, Sliding and crossing dynamics in extended Filippov systems, SIAM J. Appl. Dyn. Syst., 17 (2018), 823-858. · Zbl 1412.34063
[27] R. Cristiano, T. Carvalho, D. J. Tonon, et al., Hopf and homoclinic bifurcations on the sliding vector field of switching systems in R 3
[28] L. S. Chen and Z. J. Jing, The existence and uniqueness of the limit cycle of the differential equations in the predator-prey system, Chinese Sci. Bull., 7 (1986), 73-80.
[29] M. A. Aziz-Alaoui and M. D. Okiye, Boundedness and global stability for a predator-prey model with modified Leslie-Gower and Holling-type II schemes, Appl. Math. Lett., 16 (2003), 1069-1075. · Zbl 1063.34044
[30] Z. F. Zhang, T. R. Ding, W. Z. Huang, et al., Qualitative Theory of Differential Equations, Science Press, Beijing, 1985.
[31] D. M. Xiao and S. G. Ruan, Bogdanov-Takens bifurcations in predator-prey systems with constant rate harvesting, Fields Institute Communications, 21 (1999), 493-506. · Zbl 0917.34029
[32] A. F. Filippov, Differential equations with discontinuous righthand sides, Kulwer Academic Publishers, Dordrecht, The Netherlands, 1988. · Zbl 0664.34001
[33] S. Y. Tang and Y. N. Xiao, Biological Dynamics of Single Species, Science Press, Beijing, 2008.
[34] Y. A. Kuznetsov, Elements of Applied Bifurcation Theory, 2^nd edition, Springer, New York, 1998. · Zbl 0914.58025
[35] L. Perko, Differential Equations and Dynamical Systems 3^rd edition, Springer, New York, 1996. · Zbl 0854.34001
[36] H. J. Cai, Y. J. Gong and S. G. Ruan, Bifurcation analysis in a predator-prey model with constant- yield predator harvesting, Discrete Conti. Dyn- (DCDS-B), 18 (2014), 2101-2121. · Zbl 1417.34092
[37] S. R. Lubkin, Simulating, analyzing, and animating dynamical
[38] J. H. Liang, S. Y. Tang, J. J. Nieto, et al., Analytical methods for detecting pesticide switches with evolution of pesticide resistance, Math. Biosci., 245 (2013), 249-257. · Zbl 1309.92080
[39] J. H. Liang, S. Y. Tang, R. A. Cheke, et al., Adaptive Release of Natural Enemies in a Pest-Natural Enemy System with Pesticide Resistance, B. Math. Biol., 75 (2013), 2167-2195. · Zbl 1283.92074
[40] S. S. Ge, C. Wang and T. H. Lee, Adaptive backstepping control of a class of chaotic systems, Int. J. Bifurcat. Chaos, 10 (2000), 1149-1156. · Zbl 1090.34555
[41] C. Y. Gong, Y. M. Li and X. H. Sun, Adaptive backstepping control of the biomathematical model of muscular blood vessel, J. Biomath., 22 (2007), 503-508. · Zbl 1153.93426
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.