×

Stable finite element methods preserving \(\nabla \cdot \boldsymbol{B}=0\) exactly for MHD models. (English) Zbl 1381.76174

Summary: This paper is devoted to the design and analysis of some structure-preserving finite element schemes for the magnetohydrodynamics (MHD) system. The main feature of the method is that it naturally preserves the important Gauss’s law, namely \(\nabla \cdot \boldsymbol{B}=0\). In contrast to most existing approaches that eliminate the electrical field variable \(\boldsymbol{E}\) and give a direct discretization of the magnetic field, our new approach discretizes the electric field \(\boldsymbol{E}\) by Nédélec type edge elements for \(H(\mathrm {curl})\), while the magnetic field \(\boldsymbol{B}\) by Raviart-Thomas type face elements for \(H(\mathrm {div})\). As a result, the divergence-free condition on the magnetic field holds exactly on the discrete level. For this new finite element method, an energy stability estimate can be naturally established in an analogous way as in the continuous case. Furthermore, well-posedness is rigorously established in the paper for the Picard linearization of the fully nonlinear systems by using the Brezzi theory. This well-posedness naturally leads to robust (and optimal) preconditioners for the linearized systems.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
76W05 Magnetohydrodynamics and electrohydrodynamics

Software:

FEniCS; FASP
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Armero, F., Simo, J.: Long-term dissipativity of time-stepping algorithms for an abstract evolution equation with applications to the incompressible MHD and Navier-Stokes equations. Comput. Methods Appl. Mech. Eng. 131, 41-90 (1996) · Zbl 0888.76042 · doi:10.1016/0045-7825(95)00931-0
[2] Arnold, D., Falk, R., Winther, R.: Finite element exterior calculus, homological techniques, and applications. Acta Numer. 15, 1 (2006) · Zbl 1185.65204 · doi:10.1017/S0962492906210018
[3] Arnold, D., Falk, R., Winther, R.: Finite element exterior calculus: from Hodge theory to numerical stability. Bull. Am. Math. Soc. 47(2), 281-354 (2010) · Zbl 1207.65134 · doi:10.1090/S0273-0979-10-01278-4
[4] Badia, S., Codina, R., Planas, R.: On an unconditionally convergent stabilized finite element approximation of resistive magnetohydrodynamics. J. Comput. Phys. 234, 399-416 (2013) · Zbl 1284.76248 · doi:10.1016/j.jcp.2012.09.031
[5] Balsara, D., Kim, J.: A comparison between divergence-cleaning and staggered-mesh formulations for numerical magnetohydrodynamics. Astrophys. J. 602, 1079-1090 (2004) · doi:10.1086/381051
[6] Balsara, D., Spicer, D.: A staggered mesh algorithm using high order Godunov fluxes to ensure solenoidal magnetic fields in magnetohydrodynamic simulations. J. Comput. Phys. 149, 270-292 (1999) · Zbl 0936.76051 · doi:10.1006/jcph.1998.6153
[7] Bandaru, V., Boeck, T., Krasnov, D., Schumacher, J.: Numerical computation of liquid metal MHD duct flows at finite magnetic Reynolds number. pamir.sal.lv (1999) · Zbl 1349.76427
[8] \[Ba \breve{\rm n}\] n˘as, L., Prohl, A.: Convergent finite element discretization of the multi-fluid nonstationary incompressible magnetohydrodynamics equations. Math. Comput. 79(272), 1957-1999 (2010) · Zbl 1273.76264
[9] Boffi, D., Brezzi, F., Fortin, M.: Mixed Finite Element Methods and Applications. Springer, Berlin (2013) · Zbl 1277.65092
[10] Bossavit, A.: Discretization of Electromagnetic Problems: The “Generalized Finite Differences” Approach. Handbook of Numerical Analysis, vol. XIII(04) (2005) · Zbl 1109.78001
[11] Brackbill, J.: Fluid modeling of magnetized plasmas. Space Plasma Simul. 42, 153-167 (1985) · doi:10.1007/978-94-009-5454-0_12
[12] Brackbill, J.U., Barnes, D.C.: The effect of nonzero \[\nabla \cdot B∇·B\] on the numerical solution of the magnetohydrodynamic equations. J. Comput. Phys. 430, 426-430 (1980) · Zbl 0429.76079 · doi:10.1016/0021-9991(80)90079-0
[13] Brezzi, F.: On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers. ESAIM. Math. Model. Numer. Anal. 8, 129-151 (1974) · Zbl 0338.90047
[14] Cai, W., Wu, J., Xin, J.: Divergence-free H(div)-conforming hierarchical bases for magnetohydrodynamics (MHD). Commun. Math. Stat. 1, 19-35 (2013) · Zbl 1311.76048 · doi:10.1007/s40304-013-0003-9
[15] Cockburn, B., Li, F., Shu, C.: Locally divergence-free discontinuous Galerkin methods for the Maxwell equations. J. Comput. Phys. 194(2), 588-610 (2004) · Zbl 1049.78019 · doi:10.1016/j.jcp.2003.09.007
[16] Conraths, H.: Eddy current and temperature simulation in thin moving metal strips. Int. J. Numer. Methods Eng. 39, 141-163 (1996) · Zbl 0855.65132 · doi:10.1002/(SICI)1097-0207(19960115)39:1<141::AID-NME843>3.0.CO;2-K
[17] Cyr, E., Shadid, J., Tuminaro, R., Pawlowski, R., Chacón, L.: A new approximate block factorization preconditioner for two-dimensional incompressible (reduced) resistive MHD. SIAM J. Sci. Comput. 35(3), 701-730 (2013) · Zbl 1273.76269 · doi:10.1137/12088879X
[18] Dai, W., Woodward, P.: On the divergence-free condition and conservation laws in numerical simulations for supersonic magnetohydrodynamic flows. Astrophys. J. 494(1) (1998) · Zbl 1288.76093
[19] Davidson, P.: An Introduction to Magnetohydrodynamics. Cambridge University Press, Cambridge (2001) · Zbl 0974.76002 · doi:10.1017/CBO9780511626333
[20] Dedner, A., Kemm, F., Kröner, D., Munz, C., Schnitzer, T., Wessenberg, M.: Hyperbolic divergence cleaning for the MHD equations. J. Comput. Phys. 175(2), 645-673 (2002) · Zbl 1059.76040 · doi:10.1006/jcph.2001.6961
[21] Demkowicz, L., Vardapetyan, L.: Modeling of electromagnetic absorption/scattering problems using hp-adaptive finite elements. Comput. Methods Appl. Mech. Eng. 152, 103-124 (1998) · Zbl 0994.78011 · doi:10.1016/S0045-7825(97)00184-9
[22] de Dios, B., Brezzi, F., Marini, L., Xu, J., Zikatanov, L.: A simple preconditioner for a discontinuous Galerkin method for the Stokes problem. J. Sci. Comput. 58(3), 517-547 (2014) · Zbl 1299.76128 · doi:10.1007/s10915-013-9758-0
[23] Elman, H., Howle, V., Shadid, J., Shuttleworth, R., Tuminaro, R.: Block preconditioners based on approximate commutators. SIAM J. Sci. Comput. 27, 1651-1668 (2006) · Zbl 1100.65042 · doi:10.1137/040608817
[24] Evans, C., Hawley, J.: Simulation of magnetohydrodynamic flows—a constrained transport method. Astrophys. J. 332, 659-677 (1988) · doi:10.1086/166684
[25] Fey, M., Torrilhon, M.: A constrained transport upwind scheme for divergence-free advection. Hyperbolic Problems: Theory, Numerics, Applications, pp. 529-538 (2003) · Zbl 1134.76394
[26] Girault, V., Raviart, P.: Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms. Springer, Berlin (1986) · Zbl 0585.65077 · doi:10.1007/978-3-642-61623-5
[27] Guermond, J.L., Minev, P.D.: Mixed finite element approximation of an MHD problem involving conducting and insulating regions: the 3D case. Numer. Methods Partial Differ. Equ. 19(6), 709-731 (2003). doi:10.1002/num.10067 · Zbl 1037.76034
[28] Gunzburger, M., Meir, A., Peterson, J.: On the existence, uniqueness, and finite element approximation of solutions of the equations of stationary, incompressible magnetohydrodynamics. Math. Comput. 56(194), 523-563 (1991) · Zbl 0731.76094 · doi:10.1090/S0025-5718-1991-1066834-0
[29] Helzel, C., Rossmanith, J.A., Taetz, B.: An unstaggered constrained transport method for the 3D ideal magnetohydrodynamic equations. J. Comput. Phys. 230, 3803-3829 (2011) · Zbl 1369.76061 · doi:10.1016/j.jcp.2011.02.009
[30] Hiptmair, R.: Finite elements in computational electromagnetism. Acta Numer. 11, 237-339 (2002) · Zbl 1123.78320 · doi:10.1017/S0962492902000041
[31] Hiptmair, R.: Symmetric coupling for eddy current problems. SIAM J. Numer. Anal. 40(1), 41-65 (2002) · Zbl 1010.78011 · doi:10.1137/S0036142900380467
[32] Hiptmair, R., Heumann, H., Mishra, S., Pagliantini, C.: Discretizing the advection of differential forms. In: ICERM Topical Workshop, Robust Discretization and Fast Solvers for Computable Multi-physics Models. ICERM (2014) · Zbl 1369.76061
[33] Jardin, S.: Computational Methods in Plasma Physics. CRC Press, Boca Raton (2010) · Zbl 1198.76002 · doi:10.1201/EBK1439810958
[34] Li, F., Shu, C.: Locally divergence-free discontinuous Galerkin methods for MHD equations. J. Sci. Comput. 22(1-3), 413-442 (2005) · Zbl 1123.76341
[35] Li, F., Xu, L.: Arbitrary order exactly divergence-free central discontinuous Galerkin methods for ideal MHD equations. J. Comput. Phys. 231, 2655-2675 (2012) · Zbl 1427.76135 · doi:10.1016/j.jcp.2011.12.016
[36] Lin, P., Sala, M., Shadid, J., Tuminaro, R.: Performance of fully-coupled algebraic multilevel domain decomposition preconditioners for incompressible flow and transport. Int. J. Numer. Methods Eng. 67(9), 208-225 (2006) · Zbl 1110.76315 · doi:10.1002/nme.1624
[37] Liu, C.: Energetic variational approaches in complex fluids. In: Multi-Scale Phenomena in Complex Fluids: Modeling, Analysis and Numerical Simulations. World Scientific Publishing Company, Singapore (2009)
[38] Liu, J., Wang, W.: An energy-preserving MAC-Yee scheme for the incompressible MHD equation. J. Comput. Phys. 174(1), 12-37 (2001) · Zbl 0999.76096 · doi:10.1006/jcph.2001.6772
[39] Liu, J., Wang, W.: Energy and helicity preserving schemes for hydro- and magnetohydro-dynamics flows with symmetry. J. Comput. Phys. 200, 8-33 (2004) · Zbl 1288.76093 · doi:10.1016/j.jcp.2004.03.005
[40] Logg, A., Mardal, K., Wells, G.: Automated Solution of Differential Equations by the Finite Element Method. Springer, Berlin (2012) · Zbl 1247.65105 · doi:10.1007/978-3-642-23099-8
[41] Londrillo, P., Zanna, L.: On the divergence-free condition in Godunov-type schemes for ideal magnetohydrodynamics: the upwind constrained transport method. J. Comput. Phys. 195, 17-48 (2004) · Zbl 1087.76074 · doi:10.1016/j.jcp.2003.09.016
[42] Ma, Y., Hu, K., Hu, X., Xu, J.: Robust preconditioners for the magnetohydrodynmaics models (2015). arXiv:1503.02553 · Zbl 1273.76269
[43] Monk, P.: Finite Element Methods for Maxwell’s Equations. Oxford University Press, Oxford (2003) · Zbl 1024.78009 · doi:10.1093/acprof:oso/9780198508885.001.0001
[44] Moreau, R.: Magnetohydrodynamics. Kluwer, Dordrecht (1990) · Zbl 0714.76003 · doi:10.1007/978-94-015-7883-7
[45] Nédélec, J.: Mixed finite elements in \[\mathbb{R}^3\] R3. Numer. Math. 35, 315-341 (1980) · Zbl 0419.65069 · doi:10.1007/BF01396415
[46] Nédélec, J.: A new family of mixed finite elements in \[\mathbb{R}^3\] R3. Numer. Math. 50, 57-81 (1986) · Zbl 0625.65107 · doi:10.1007/BF01389668
[47] Pekmen, B., Tezer-Sezgin, M.: DRBEM solution of incompressible MHD flow with magnetic potential. Comput. Model. Eng. Sci. 96(4), 275-292 (2013) · Zbl 1356.76444
[48] Phillips, E., Elman, H., Cyr, E., Shadid, J., Pawlowski, R.: A block preconditioner for an exact penalty formulation for stationary MHD. SIAM J. Sci. Comput. 36(6), 930-951 (2014) · Zbl 1308.76333 · doi:10.1137/140955082
[49] Powell, K.: An approximate Riemann solver for magnetohydrodynamics. Upwind and High-Resolution Schemes, pp. 570-583 (1997) · Zbl 1299.76128
[50] Prohl, A.: Convergent finite element discretizations of the nonstationary incompressible magnetohydrodynamics system. Math. Model. Numer. Anal. 42, 1065-1087 (2008) · Zbl 1149.76029 · doi:10.1051/m2an:2008034
[51] Raviart, P., Thomas, J.: A mixed finite element method for second order elliptic problems. Lecture Notes Math. 606, 292-315 (1977) · Zbl 0362.65089 · doi:10.1007/BFb0064470
[52] Rossmanith, J.A.: An unstaggered, high-resolution constrained transport method for magnetohydrodynamic flows. SIAM J. Sci. Comput. 28(5), 1766-1797 (2006) · Zbl 1344.76092 · doi:10.1137/050627022
[53] Salah, N., Soulaimani, A., Habashi, W.: A finite element method for magnetohydrodynamics. Comput. Methods Appl. Mech. Eng. 190, 5867-5892 (2001) · Zbl 1044.76030 · doi:10.1016/S0045-7825(01)00196-7
[54] Schötzau, D.: Mixed finite element methods for stationary incompressible magneto-hydrodynamics. Numer. Math. 96, 771-800 (2004) · Zbl 1098.76043 · doi:10.1007/s00211-003-0487-4
[55] Shadid, J., Cyr, E., Pawlowski, R., Tuminaro, R., Chacón, L., Lin, P.: Initial performance of fully-coupled AMG and approximate block factorization preconditioners for solution of implicit FE resistive MHD. In: Pereira, J., Sequeira, A. (eds.) V Europena Conference on Computational Fluid Dynamics, pp. 1-19 (2010)
[56] Shadid, J., Pawlowski, R., Banks, J., Chacon, L., Lin, P., Tuminaro, R.: Towards a scalable fully-implicit fully-coupled resistive MHD formulation with stabilized FE methods. J. Comput. Phys. 229, 7649-7671 (2010) · Zbl 1425.76312 · doi:10.1016/j.jcp.2010.06.018
[57] Tóth, G.: The \[\nabla \cdot B= 0∇·B=0\] constraint in shock-capturing magnetohydrodynamics codes. J. Comput. Phys. 161, 605-652 (2000) · Zbl 0980.76051 · doi:10.1006/jcph.2000.6519
[58] Tuminaro, R., Tong, C., Shadid, J., Devine, K.: On a multilevel preconditioning module for unstructured mesh Krylov solvers: two-level Schwarz. Commun. Numer. Methods Eng. 18, 383-389 (2002) · Zbl 0999.65101 · doi:10.1002/cnm.478
[59] Wiedmer, M.: Finite element approximation for equations of magnetohydrodynamics. Math. Comput. 69, 83-101 (2000) · Zbl 0944.76039 · doi:10.1090/S0025-5718-99-01146-1
[60] Xu, J.: Fast Auxiliary Space Preconditioning (FASP) Software Package. http://fasp.sourceforge.net/
[61] Ye, X., Hall, C.A.: A discrete divergence-free basis for finite element methods. Numer. Algorithms 16, 365-380 (1997) · Zbl 0903.76055 · doi:10.1023/A:1019159702198
[62] Yee, K.: Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. J. Comput. Phys. 14, 302 (1966) · Zbl 1155.78304
[63] Zhang, S.: Bases for C0-P1 divergence-free elements and for C1-P2 finite elements on union jack grids (2012). http://www.math.udel.edu/ szhang/research/p/uj.pdf · Zbl 1185.65204
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.