×

Some new results on the superstability of the Cauchy equation on semigroups. (English) Zbl 1263.39023

Let \((S,\cdot)\) be a commutative semigroup, \(f: S\to \{z\in\mathbb{C}:\;-\pi<\text{Im}\, z\leq \pi\}\). Suppose that for some mappings \(\psi: S\to\mathbb{R}^{+}\), \(\phi: S^2\to\mathbb{R}^{+}\) we have \[ |f(x\cdot y)-f(x)-f(y)|\leq\phi(x,y)\quad\text{and}\quad |f(x)|\leq\psi(x),\qquad x,y\in S. \] Assume that there exists a \(p\in S\) such that \[ \text{Re}\,f(p)>0,\quad\sum_{m=0}^{\infty}\phi(p,p^{m+1})<\infty \] and \[ \psi(x\cdot p)\leq \psi(x),\qquad x\in S. \] Then \(f\) is a Cauchy mapping, i.e. \[ f(x\cdot y)=f(x)+f(y). \] The given proof is based on the fixed-point method.

MSC:

39B82 Stability, separation, extension, and related topics for functional equations
39B52 Functional equations for functions with more general domains and/or ranges
20M14 Commutative semigroups
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Alimohammady, M., Sadeghi, A.: On the superstability of the Pexider type of exponential equation in Banach algebra. Int. J. Nonlinear Anal. Appl. (2011) (in press) · Zbl 1281.54017
[2] Aoki T.: On the stability of the linear transformation in Banach spaces. J. Math. Soc Jpn. 2, 64–66 (1950) · Zbl 0040.35501 · doi:10.2969/jmsj/00210064
[3] Baker J.A.: A general functional equation and its stability. Proc. Am. Math. Soc. 133, 1657–1664 (2005) · Zbl 1066.39026 · doi:10.1090/S0002-9939-05-07841-X
[4] Baker J.A.: The stability of the cosine equation. Proc. Am. Math. Soc. 80, 411–416 (1980) · Zbl 0448.39003 · doi:10.1090/S0002-9939-1980-0580995-3
[5] Baker J.A., Lawrence J., Zorzitto F.: The stability of the equation f(x + y) = f(x)f(y). Proc. Am. Math. Soc. 74, 242–246 (1979) · Zbl 0397.39010
[6] Czerwik S.: On the stability of the homogeneous mapping. G. R. Math. Rep. Acad. Sci. Can. XIV 6, 268–272 (1992) · Zbl 0795.39006
[7] Czerwik S., Przybyla M.: A general Baker superstability criterion for the D’Alembert functional equation. Banach spaces and their applications in analysis, pp. 303–306. Walter de Gruyter Gmbh @ Co.KG, Berlin (2007) · Zbl 1135.39012
[8] Diaz J., Margolis B.: A fixed point theorem of the alternative for contractions on a generalized complete metric space. Bull. Am. Math. Soc. 74, 305–309 (1968) · Zbl 0157.29904 · doi:10.1090/S0002-9904-1968-11933-0
[9] Forti G.L.: Hyers-Ulam stability of functional equations in several variables. Aeq. Math. 50, 143–190 (1995) · Zbl 0836.39007 · doi:10.1007/BF01831117
[10] Forti G.L.: Remark 11 in: report of the 22nd international symposium on functional equations. Aeq. Math 29, 90–91 (1985) · Zbl 0593.39007 · doi:10.1007/BF02189806
[11] Ger R., Šemrl P.: The stability of the exponential equation. Proc. Am. Math. Soc. 124, 779–787 (1996) · Zbl 0846.39013 · doi:10.1090/S0002-9939-96-03031-6
[12] Hyers D.H.: On the stability of the linear functional equation. Proc. Nat. Acad. Sci. USA 27, 222–224 (1941) · Zbl 0061.26403 · doi:10.1073/pnas.27.4.222
[13] Hyers D.H., Rassias Th.M.: Approximate homomorphisms. Aeq. Math. 44, 125–153 (1992) · Zbl 0806.47056 · doi:10.1007/BF01830975
[14] Hyers D.H.: The Stability of homomorphisms and related topics. In: Rassias, Th.M. (eds) Global Analysis–Analysis on manifolds Teubner-Texte zur Math vol. 57, pp. 140–153. Teubner, Leipzig (1983) · Zbl 0517.22001
[15] Hyers D.H., Ulam S.M.: Approximately convex functions. Proc. Am. Math. Soc. 3, 821–828 (1952) · Zbl 0047.29505 · doi:10.1090/S0002-9939-1952-0049962-5
[16] Isac G., Rassias Th.M.: Stability of {\(\Psi\)}-additive mappings: applications to nonlinear analysis. Int. J. Math. Math. Sci. 19(2), 219–228 (1996) · Zbl 0843.47036 · doi:10.1155/S0161171296000324
[17] Jarosz K.: Almost multiplicative functionals. Studia Math. 124, 37–58 (1997) · Zbl 0897.46043
[18] Nikodem K.: Approximately quasiconvex functions. C.R. Math. Rep. Acad. Sci. Can 10, 291–294 (1988) · Zbl 0664.26006
[19] Johnson B.E.: Approximately multiplicative functionals. J. Lond. Math. Soc 34(2), 489–510 (1986) · Zbl 0625.46059 · doi:10.1112/jlms/s2-34.3.489
[20] Radu V.: The fixed point alternative and the stability of functional equations. Fixed Point Theory 4, 91–96 (2003) · Zbl 1051.39031
[21] Rassias Th.M.: On the stability of functional equations and a problem of Ulam. Acta Applicandae Mathematicae. 62, 23–130 (2000) · Zbl 0981.39014 · doi:10.1023/A:1006499223572
[22] Rassias Th.M.: Problem 18, In: Report on the 31st ISFE. Aeq. Math. 47, 312–313 (1994)
[23] Rassias Th.M.: On the stability of the linear mapping in Banach spaces. Proc. Am. Math. Soc. 72, 297–300 (1978) · Zbl 0398.47040 · doi:10.1090/S0002-9939-1978-0507327-1
[24] Rassias Th.M.: The problem of S.M. Ulam for approximately multiplicative mappings. J. Math. Anal. Appl. 246, 352–378 (2000) · Zbl 0958.46022 · doi:10.1006/jmaa.2000.6788
[25] Tabor J., Tabor J.: Homogenity is superstable. Publ. Math. Debrecen 45, 123–130 (1994) · Zbl 0823.39008
[26] Ulam S.M.: Problems in Modern Mathematics, Science Editions. Wiley, New York (1960) · Zbl 0086.24101
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.