×

Tropical mirror symmetry for elliptic curves. (English) Zbl 1390.14191

J. Reine Angew. Math. 732, 211-246 (2017); erratum ibid. 760, 163-164 (2020).
Elliptic curves provide the first non-trivial examples of Calabi-Yau varieties to check the conjectural predictions of mirror symmetry, a phenomenon which arose from dualities in string theories. Mirror symmetry for elliptic curves has been extensively studied in the mathematics literature. The paper provides a tropical generalization to the classically known results for elliptic curves in this context.
Using tropical geometric techniques to approach mirror symmetry lies in the heart of the program initiated by Mark Gross and Bernd Siebert. In his paper [Adv. Math. 224, No. 1, 169–245 (2010; Zbl 1190.14038)], M. Gross used various ideas of the Gross-Siebert program to explain tropically mirror symmetry for \(\mathbb{P}^2\), where the mirror is \((\mathbb{C}^{\times})^2\), endowed with a suitable potential function. The paper under review can be seen as a sequel of this tropical approach. However, it provides the first tropical proof of the mirror symmetry conjecture in the compact Calabi-Yau case. Some techniques developed in the paper are also inspired by various other works, in particular by [E. Goujard and M. Moeller, “Counting Feynman-like graphs: quasimodularity and Siegel-Veech weight”, Preprint, arXiv:1609.01658], while carrying out computations for Feynmann integrals.
The mirror symmetry conjecture, in particular, implies a relationship between the generating series of Hurwitz numbers of the elliptic curve to Feynman integrals. The main results of this paper investigate this classical relationship on a tropical level. Moreover, a tropical correspondence theorem for Hurwitz numbers, relating tropical and classical Hurwitz invariants in all genera and degrees is shown.
The tropical methods developed have several advantages. They provide computational accessibility to obtain the involved invariants in mirror symmetry. Throughout the paper, several computations are carried out in various explicit examples. Moreover, under suitable tropical correspondence theorems that are provided, the tropical statements actually lead us to proofs of the classical mirror symmetry predictions.

MSC:

14T20 Geometric aspects of tropical varieties
14J33 Mirror symmetry (algebro-geometric aspects)

Citations:

Zbl 1190.14038
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] [1] M. Abouzaid, Morse homology, tropical geometry and homological mirror symmetry for toric varieties, Selecta Math. (N.S.) 15 (2009), no. 2, 189-270. http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000268103800001&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f310.1007/s00029-009-0492-2AbouzaidM.Morse homology, tropical geometry and homological mirror symmetry for toric varietiesSelecta Math. (N.S.)1520092189270 · Zbl 1204.14019
[2] [2] G. Andrews and S. Rose, MacMahon’s sum-of-divisors functions, Chebyshev polynomials, and quasi-modular forms, J. reine angew. Math. 673 (2013), 97-103. AndrewsG.RoseS.MacMahon’s sum-of-divisors functions, Chebyshev polynomials, and quasi-modular formsJ. reine angew. Math.673201397103 · Zbl 1337.11002
[3] [3] S. Barannikov, Semi-infinite hodge structures and mirror symmetry for projective spaces, preprint (2000), http://arxiv.org/abs/math/0010157. <element-citation publication-type=”other“> BarannikovS.Semi-infinite hodge structures and mirror symmetry for projective spacesPreprint2000 <ext-link ext-link-type=”uri“ xlink.href=”>http://arxiv.org/abs/math/0010157
[4] [4] B. Bertrand, E. Brugallé and G. Mikhalkin, Tropical open Hurwitz numbers, Rend. Semin. Mat. Univ. Padova 125 (2011), 157-171. 10.4171/RSMUP/125-10http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000294886300010&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3BertrandB.BrugalléE.MikhalkinG.Tropical open Hurwitz numbersRend. Semin. Mat. Univ. Padova1252011157171 · Zbl 1226.14066
[5] [5] J. Böhm, K. Bringmann, A. Buchholz and H. Markwig, ellipticcovers.lib. A Singular 4 library for Gromov-Witten invariants of elliptic curves, 2013. Available in the latest version of Singular at https://github.com/jankoboehm/Sources.git. <element-citation publication-type=”other“> BöhmJ.BringmannK.BuchholzA.MarkwigH.ellipticcovers.lib. A Singular 4 library for Gromov-Witten invariants of elliptic curves, 2013. Available in the latest version of Singular at <ext-link ext-link-type=”uri“ xlink.href=”>https://github.com/jankoboehm/Sources.gitWebsite
[6] [6] K. Bringmann, A. Folsom and K. Mahlburg, Quasimodular forms and sℓ(m|m)∧{s\ell(m|m)^{\land{}}} characters, Ramanujan J. 36 (2015), no. 1-2, 103-116. BringmannK.FolsomA.MahlburgK.Quasimodular forms and sℓ(m|m)∧{s\ell(m|m)^{\land{}}} charactersRamanujan J.3620151-2103116 · Zbl 1380.11028
[7] [7] R. Castaño-Bernard, Y. Soibelman and I. Zharkov, Mirror symmetry and tropical geometry, Contemp. Math. 527, American Mathematical Society, Providence 2010. Castaño-BernardR.SoibelmanY.ZharkovI.Mirror symmetry and tropical geometryContemp. Math. 527American Mathematical SocietyProvidence2010 · Zbl 1200.14001
[8] [8] R. Cavalieri, P. Johnson and H. Markwig, Tropical Hurwitz numbers, J. Algebraic Combin. 32 (2010), no. 2, 241-265. 10.1007/s10801-009-0213-0CavalieriR.JohnsonP.MarkwigH.Tropical Hurwitz numbersJ. Algebraic Combin.3220102241265 · Zbl 1218.14058
[9] [9] W. Decker, G.-M. Greuel, G. Pfister and H. Schönemann, Singular 4-0-1. A computer algebra system for polynomial computations, Centre for Computer Algebra, University of Kaiserslautern, 2014, http://www.singular.uni-kl.de. <element-citation publication-type=”other“> DeckerW.GreuelG.-M.PfisterG.SchönemannH.Singular 4-0-1. A computer algebra system for polynomial computations, Centre for Computer Algebra, University of Kaiserslautern, 2014, <ext-link ext-link-type=”uri“ xlink.href=”>http://www.singular.uni-kl.deWebsite
[10] [10] R. Dijkgraaf, Mirror symmetry and elliptic curves, The moduli space of curves (Texel Island 1994), Progr. Math. 129, Birkhäuser, Boston (1995), 149-163. DijkgraafR.Mirror symmetry and elliptic curvesThe moduli space of curvesTexel Island 1994Progr. Math. 129BirkhäuserBoston1995149163 · Zbl 0913.14007
[11] [11] C. Dong, G. Mason and K. Nagatomo, Quasi-modular forms and trace functions associated to free boson and lattice vertex operator algebras, Int. Math. Res. Not. IMRN 2001 (2001), 409-427. 10.1155/S1073792801000204DongC.MasonG.NagatomoK.Quasi-modular forms and trace functions associated to free boson and lattice vertex operator algebrasInt. Math. Res. Not. IMRN20012001409427 · Zbl 0990.17022
[12] [12] M. Eichler and D. Zagier, The theory of Jacobi forms, Progr. Math. 55, Birkhäuser, Boston 1985. EichlerM.ZagierD.The theory of Jacobi formsProgr. Math. 55BirkhäuserBoston1985 · Zbl 0554.10018
[13] [13] H. Fan, T. Jarvis and Y. Ruan, The Witten equation, mirror symmetry, and quantum singularity theory, Ann. of Math. (2) 178 (2013), no. 1, 1-106. http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000317262500001&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f310.4007/annals.2013.178.1.1FanH.JarvisT.RuanY.The Witten equation, mirror symmetry, and quantum singularity theoryAnn. of Math. (2)178201311106 · Zbl 1310.32032
[14] [14] B. Fang, C.-C. M. Liu, D. Treumann and E. Zaslow, T-duality and homological mirror symmetry for toric varieties, Adv. Math. 229 (2012), no. 3, 1875-1911. http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000299604600017&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3FangB.LiuC.-C. M.TreumannD.ZaslowE.T-duality and homological mirror symmetry for toric varietiesAdv. Math.2292012318751911 · Zbl 1260.14049
[15] [15] M. Gross, Mirror symmetry for ℙ2{\mathbb{P}^2} and tropical geometry, Adv. Math. 224 (2010), no. 1, 169-245. GrossM.Mirror symmetry for ℙ2{\mathbb{P}^2} and tropical geometryAdv. Math.22420101169245 · Zbl 1190.14038
[16] [16] M. Gross and B. Siebert, Mirror symmetry via logarithmic degeneration data I, J. Differential Geom. 72 (2006), 169-338. 10.4310/jdg/1143593211GrossM.SiebertB.Mirror symmetry via logarithmic degeneration data IJ. Differential Geom.722006169338 · Zbl 1107.14029
[17] [17] M. Gross and B. Siebert, Mirror symmetry via logarithmic degeneration data II, J. Algebraic Geom. 19 (2010), no. 4, 679-780. 10.1090/S1056-3911-2010-00555-3http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000281453000003&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3GrossM.SiebertB.Mirror symmetry via logarithmic degeneration data IIJ. Algebraic Geom.1920104679780 · Zbl 1209.14033
[18] [18] R. Hartshorne, Algebraic geometry, Springer, New York 1977. HartshorneR.Algebraic geometrySpringerNew York1977 · Zbl 0367.14001
[19] [19] M. Kaneko and D. Zagier, A generalized Jacobi theta function and quasimodular forms, The moduli space of curves (Texel Island 1994), Progr. Math. 129, Birkhäuser, Boston (1995), 165-172. KanekoM.ZagierD.A generalized Jacobi theta function and quasimodular formsThe moduli space of curvesTexel Island 1994Progr. Math. 129BirkhäuserBoston1995165172 · Zbl 0892.11015
[20] [20] A. Kapustin, M. Kreuzer and K.-G. Schlesinger, Homological mirror symmetry. New developments and perspectives, Lecture Notes in Phys. 757, Springer, Berlin 2009. KapustinA.KreuzerM.SchlesingerK.-G.Homological mirror symmetry. New developments and perspectivesLecture Notes in Phys. 757SpringerBerlin2009
[21] [21] M. Koecher and A. Krieg, Elliptische Funktionen und Modulformen, Springer, Berlin 2007. KoecherM.KriegA.Elliptische Funktionen und ModulformenSpringerBerlin2007 · Zbl 1129.11001
[22] [22] S. Li, Feynman graph integrals and almost modular forms, Commun. Number Theory Phys. 6 (2012), no. 1, 129-157. 10.4310/CNTP.2012.v6.n1.a3LiS.Feynman graph integrals and almost modular formsCommun. Number Theory Phys.620121129157 · Zbl 1270.81142
[23] [23] H. Markwig and J. Rau, Tropical descendant Gromov-Witten invariants, Manuscripta Math. 129 (2009), no. 3, 293-335. 10.1007/s00229-009-0256-5http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000266830000002&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3MarkwigH.RauJ.Tropical descendant Gromov-Witten invariantsManuscripta Math.12920093293335 · Zbl 1171.14039
[24] [24] G. Mikhalkin, Enumerative tropical geometry in ℝ2{{\mathbb{R}^2}}, J., Amer. Math. Soc. 18 (2005), 313-377. MikhalkinG.Enumerative tropical geometry in ℝ2{{\mathbb{R}^2}}, J.Amer. Math. Soc.182005313377 · Zbl 1092.14068
[25] [25] M. Roth and N. Yui, Mirror symmetry for elliptic curves: The A-model (fermionic) counting, Motives, quantum field theory, and pseudodifferential operators, Clay Math. Proc. 12, American Mathematical Society, Providence (2010), 245-283. RothM.YuiN.Mirror symmetry for elliptic curves: The A-model (fermionic) countingMotives, quantum field theory, and pseudodifferential operatorsClay Math. Proc. 12American Mathematical SocietyProvidence2010245283 · Zbl 1226.14067
[26] [26] M.-H. Saito, S. Hosono and K. Yoshioka, New developments in algebraic geometry, integrable systems and mirror symmetry, Adv. Stud. Pure Math. 59, Mathematical Society of Japan, Tokyo 2010. SaitoM.-H.HosonoS.YoshiokaK.New developments in algebraic geometry, integrable systems and mirror symmetryAdv. Stud. Pure Math. 59Mathematical Society of JapanTokyo2010 · Zbl 1200.14002
[27] [27] K. Ueda and M. Yamazaki, Homological mirror symmetry for toric orbifolds of toric del Pezzo surfaces, J. reine angew. Math. 680 (2013), 1-22. http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000321105300001&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3UedaK.YamazakiM.Homological mirror symmetry for toric orbifolds of toric del Pezzo surfacesJ. reine angew. Math.6802013122 · Zbl 1285.53076
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.