A feature-aware SPH for isotropic unstructured mesh generation. (English) Zbl 07340459

Summary: In this paper, we present a feature-aware SPH method for the concurrent and automated isotropic unstructured mesh generation. Two additional objectives are achieved with the proposed method compared to the original SPH-based mesh generator [the authors, “Parallel fast-neighbor-searching and communication strategy for particle-based methods”, Eng. Comput. 36, No. 3, 899–929 (2019; doi:10.1108/EC-05-2018-0226)]. First, a feature boundary correction term is introduced to address the issue of incomplete kernel support at the boundary vicinity. The mesh generation of feature curves, feature surfaces and volumes can be handled concurrently without explicitly following a dimensional sequence. Second, a two-phase model is proposed to characterize the mesh-generation procedure by a feature-size-adaptation phase and a mesh-quality-optimization phase. By proposing a new error measurement criterion and an adaptive control system with two sets of simulation parameters, the objectives of faster feature-size adaptation and local mesh-quality improvement are merged into a consistent framework. The proposed method is validated with a set of 2D and 3D numerical tests with different complexities and scales. The results demonstrate that high-quality meshes are generated with a significant speedup of convergence.


76-XX Fluid mechanics
65-XX Numerical analysis
Full Text: DOI arXiv


[1] Du, Q.; Wang, D., Recent progress in robust and quality delaunay mesh generation, J. Comput. Appl. Math., 195, 1-2, 8-23 (2006) · Zbl 1096.65016
[2] Schöberl, J., Netgen an advancing front 2D/3D-mesh generator based on abstract rules, Comput. Vis. Sci., 1, 1, 41-52 (1997) · Zbl 0883.68130
[3] Löhner, R., Recent advances in parallel advancing front grid generation, Arch. Comput. Methods Eng., 21, 2, 127-140 (2014) · Zbl 1349.65667
[4] Shephard, M. S.; Georges, M. K., Automatic three-dimensional mesh generation by the finite octree technique, Int. J. Numer. Methods Eng., 32, 4, 709-749 (1991) · Zbl 0755.65116
[5] Yerry, M. A.; Shephard, M. S., Automatic three-dimensional mesh generation by the modified-octree technique, Internat. J. Numer. Methods Engrg., 20, 11, 1965-1990 (1984) · Zbl 0547.65077
[6] Shewchuk, J. R., Delaunay refinement algorithms for triangular mesh generation, Computational geometry, 22, 1-3, 21-74 (2002) · Zbl 1016.68139
[7] Chew, L. P., Guaranteed-quality delaunay meshing in 3D (short version), (Proceedings of the Thirteenth Annual Symposium on Computational Geometry (1997), ACM), 391-393
[8] Ni, S.; Zhong, Z.; Liu, Y.; Wang, W.; Chen, Z.; Guo, X., Sliver-suppressing tetrahedral mesh optimization with gradient-based shape matching energy, Comput. Aided Geom. Design, 52, 247-261 (2017) · Zbl 1366.65043
[9] Du, Q.; Faber, V.; Gunzburger, M., Centroidal voronoi tessellations: Applications and algorithms, SIAM review, 41, 4, 637-676 (1999) · Zbl 0983.65021
[10] Fu, L.; Han, L.; Hu, X. Y.; Adams, N. A., An isotropic unstructured mesh generation method based on a fluid relaxation analogy, Comput. Methods Appl. Mech. Engrg., 350, 396-431 (2019) · Zbl 1441.65075
[11] Zhong, Z.; Guo, X.; Wang, W.; Lévy, B.; Sun, F.; Liu, Y.; Mao, W., Particle-based anisotropic surface meshing, ACM Trans. Graph., 32, 4, 99 (2013)
[12] Bronson, J. R.; Levine, J. A.; Whitaker, R. T., Particle systems for adaptive, isotropic meshing of CAD models, (Proceedings of the 19th International Meshing Roundtable (2010), Springer), 279-296
[13] Chrisochoides, N., Parallel mesh generation, (Numerical Solution of Partial Differential Equations on Parallel Computers (2006), Springer), 237-264 · Zbl 1097.65122
[14] S.J. Owen, A survey of unstructured mesh generation technology. in: IMR, 1998, pp. 239-267.
[15] Frey, P. J.; George, P.-L., Mesh Generation: Application To Finite Elements (2007), ISTE
[16] Jamin, C.; Alliez, P.; Yvinec, M.; Boissonnat, J.-D., CGALmesh: a generic framework for delaunay mesh generation, ACM Trans. Math. Softw., 41, 4, 23 (2015) · Zbl 1347.65047
[17] Chen, L.; J.-c. Xu, P., Optimal delaunay triangulations, J. Comput. Math., 299-308 (2004) · Zbl 1048.65020
[18] Tournois, J.; Srinivasan, R.; Alliez, P., Perturbing slivers in 3D delaunay meshes, (Proceedings of the 18th International Meshing Roundtable (2009), Springer), 157-173
[19] Soner, S.; Ozturan, C., Generating multibillion element unstructured meshes on distributed memory parallel machines, Sci. Program., 2015, 8 (2015)
[20] Feng, D.; Chernikov, A. N.; Chrisochoides, N. P., Two-level locality-aware parallel delaunay image-to-mesh conversion, Parallel Comput., 59, 60-70 (2016)
[21] Klingner, B. M.; Shewchuk, J. R., Aggressive tetrahedral mesh improvement, (Proceedings of the 16th International Meshing Roundtable (2008), Springer), 3-23 · Zbl 1238.65011
[22] Chen, J.; Zhao, D.; Zheng, Y.; Xu, Y.; Li, C.; Zheng, J., Domain decomposition approach for parallel improvement of tetrahedral meshes, J. Parallel Distrib. Comput., 107, 101-113 (2017)
[23] Du, Q.; Wang, D., Tetrahedral mesh generation and optimization based on centroidal voronoi tessellations, Internat. J. Numer. Methods Engrg., 56, 9, 1355-1373 (2003) · Zbl 1106.74431
[24] Meyer, M.; Whitaker, R.; Kirby, R. M.; Ledergerber, C.; Pfister, H., Particle-based sampling and meshing of surfaces in multimaterial volumes, IEEE Trans. Vis. Comput. Graphics, 14, 6, 1539-1546 (2008)
[25] Yamakawa, S.; Shimada, K., High quality anisotropic tetrahedral mesh generation via ellipsoidal bubble packing, (IMR (2000), Citeseer), 263-274
[26] Frey, P. J.; Borouchaki, H.; George, P. L., Delaunay tetrahedralization using an advancing-front approach, (5th International Meshing Roundtable (1996), Citeseer), 1-48
[27] Feng, D.; Chernikov, A. N.; Chrisochoides, N. P., A hybrid parallel delaunay image-to-mesh conversion algorithm scalable on distributed-memory clusters, Comput. Aided Des., 103, 34-46 (2018)
[28] Ji, Z.; Fu, L.; Hu, X.; Adams, N., A consistent parallel isotropic unstructured mesh generation method based on multi-phase SPH, Comput. Methods Appl. Mech. Engrg., 363, 112881 (2020) · Zbl 1436.65201
[29] Meyer, M. D.; Georgel, P.; Whitaker, R. T., Robust particle systems for curvature dependent sampling of implicit surfaces, (International Conference on Shape Modeling and Applications 2005 (SMI’05) (2005), IEEE), 124-133
[30] Ji, Z.; Fu, L.; Hu, X. Y.; Adams, N. A., A new multi-resolution parallel framework for SPH, Comput. Methods Appl. Mech. Engrg., 346, 1156-1178 (2019) · Zbl 1440.76112
[31] M.P. Forum, MPI: A Message-Passing Interface Standard, Tech. rep. Knoxville, TN, USA, 1994.
[32] Board, O. A.R., Openmp application program interface vsersion 3.0 (2008), URL http://www.openmp.org/mp-documents/spec30.pdf
[33] Nickolls, J.; Buck, I.; Garland, M.; Skadron, K., Scalable p]arallel programming with CUDA, Queue, 6, 2, 40-53 (2008), URL http://doi.acm.org/10.1145/1365490.1365500
[34] Crespo, A. J.; Domínguez, J. M.; Rogers, B. D.; Gómez-Gesteira, M.; Longshaw, S.; Canelas, R.; Vacondio, R.; Barreiro, A.; García-Feal, O., DualSPHysics: Open-source parallel CFD solver based on smoothed particle hydrodynamics (SPH), Comput. Phys. Comm., 187, 204-216 (2015) · Zbl 1348.76005
[35] Plimpton, S., Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys., 117, 1, 1-19 (1995) · Zbl 0830.65120
[36] Incardona, P.; Leo, A.; Zaluzhnyi, Y.; Ramaswamy, R.; Sbalzarini, I. F., Openfpm: a scalable open framework for particle and particle-mesh codes on parallel computers, Comput. Phys. Commun., 241, 155-177 (2019)
[37] Fu, L.; Hu, X. Y.; Adams, N. A., Adaptive anisotropic unstructured mesh generation method based on fluid relaxation analogy, Commun. Comput. Phys., 27, 1275-1308 (2020), URL http://dx.doi.org/10.4208/cicp.OA-2019-0049
[38] Monaghan, J. J., Smoothed particle hydrodynamics, Annual review of astronomy and astrophysics, 30, 1, 543-574 (1992)
[39] Contreras, G.; Martonosi, M., Characterizing and improving the performance of intel threading building blocks, (Workload Characterization, 2008. IISWC 2008. Workload Characterization, 2008. IISWC 2008, IEEE International Symposium on (2008), IEEE), 57-66
[40] Fu, L.; Litvinov, S.; Hu, X. Y.; Adams, N. A., A novel partitioning method for block-structured adaptive meshes, J. Comput. Phys., 341, 447-473 (2017) · Zbl 1376.76049
[41] Osher, S.; Sethian, J. A., Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations, J. Comput. Phys., 79, 1, 12-49 (1988) · Zbl 0659.65132
[42] Chiron, L.; De Leffe, M.; Oger, G.; Le Touzé, D., Fast and accurate sph modelling of 3d complex wall boundaries in viscous and non viscous flows, Comput. Phys. Comm., 234, 93-111 (2019)
[43] Amicarelli, A.; Agate, G.; Guandalini, R., A 3d fully lagrangian smoothed particle hydrodynamics model with both volume and surface discrete elements, Internat. J. Numer. Methods Engrg., 95, 5, 419-450 (2013) · Zbl 1353.76059
[44] Feldman, J.; Bonet, J., Dynamic refinement and boundary contact forces in SPH with applications in fluid flow problems, Internat. J. Numer. Methods Engrg., 72, 3, 295-324 (2007) · Zbl 1194.76229
[45] Hermange, C.; Oger, G.; Le Chenadec, Y.; Le Touzé, D., A 3d sph-fe coupling for fsi problems and its application to tire hydroplaning simulations on rough ground, Comput. Methods Appl. Mech. Engrg., 355, 558-590 (2019) · Zbl 1441.74064
[46] D. Shepard, A two-dimensional interpolation function for irregularly-spaced data, in: Proceedings of the 1968 23rd ACM national conference, 1968, pp. 517-524.
[47] Hu, X. Y.; Adams, N. A., A multi-phase sph method for macroscopic and mesoscopic flows, J. Comput. Phys., 213, 2, 844-861 (2006) · Zbl 1136.76419
[48] Matsumoto, M.; Nishimura, T., Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator, ACM Trans. Model. Comput. Simul., 8, 1, 3-30 (1998) · Zbl 0917.65005
[49] Fu, L.; Ji, Z.; Hu, X. Y.; Adams, N. A., Parallel fast-neighbor-searching and communication strategy for particlebased methods, Eng. Comput., 36, 3, 899-929 (2019)
[50] Ji, Z.; Fu, L.; Hu, X. Y.; Adams, N. A., A Lagrangian inertial centroidal voronoi particle method for dynamic load balancing in particle-based simulations, Comput. Phys. Comm., 239, 53-63 (2019)
[51] Si, H., Tetgen a Delaunay-based quality tetrahedral mesh generator, ACM Trans. Math. Softw., 41, 2, 11 (2015) · Zbl 1369.65157
[52] Hoehn, B. R.; Oster, P.; Tobie, T.; Michaelis, K., Test methods for gear lubricants, Goriva i maziva, 47, 2, 141-152 (2008)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.