×

Entropy stable finite volume approximations for ideal magnetohydrodynamics. (English) Zbl 1447.78020

Jahresber. Dtsch. Math.-Ver. 120, No. 3, 153-219 (2018); correction ibid. 120, No. 4, 291-292 (2018).
The authors have outlined the mathematical entropy analysis of the ideal magneto-hydrodynamic equations.

MSC:

78M99 Basic methods for problems in optics and electromagnetic theory
76W05 Magnetohydrodynamics and electrohydrodynamics
PDFBibTeX XMLCite
Full Text: DOI arXiv Link

References:

[1] Balbás, J.; Tadmor, E., A central differencing simulation of the orszag-Tang vortex system, IEEE Trans. Plasma Sci., 33, 470-471, (2005) · doi:10.1109/TPS.2005.845282
[2] Balsara, D. S.; Spicer, D., A staggered mesh algorithm using high order Godunov fluxes to ensure solenoidal magnetic fields in magnetohydrodynamic simulations, J. Comput. Phys., 149, 270-292, (1999) · Zbl 0936.76051 · doi:10.1006/jcph.1998.6153
[3] Barth, T., On the role of involutions in the discontinuous Galerkin discretization of Maxwell and magnetohydrodynamic systems, 69-88, (2006), Berlin · Zbl 1135.78008 · doi:10.1007/0-387-38034-5_4
[4] Barth, T., Jespersen, D.: The design and application of upwind schemes on unstructured meshes. AIAA-89-0366 (1989)
[5] Barth, T. J.; Kröner, D. (ed.); Ohlberger, M. (ed.); Rohde, C. (ed.), Numerical methods for gasdynamic systems on unstructured meshes, No. 5, 195-285, (1999), Berlin · Zbl 0969.76040 · doi:10.1007/978-3-642-58535-7_5
[6] Bouchut, F.; Klingenberg, C.; Waagan, K., A multiwave approximate Riemann solver for ideal MHD based on relaxation. I: theoretical framework, Numer. Math., 108, 7-42, (2007) · Zbl 1126.76034 · doi:10.1007/s00211-007-0108-8
[7] Brackbill, J. U.; Barnes, D. C., The effect of nonzero \(∇ · {B}\) on the numerical solution of the magnetohydrodynamic equations, J. Comput. Phys., 35, 426-430, (1980) · Zbl 0429.76079 · doi:10.1016/0021-9991(80)90079-0
[8] Brenner, S., Scott, R.: The Mathematical Theory of Finite Element Methods, vol. 15. Springer, Berlin (2007)
[9] Brio, M.; Wu, C. C., An upwind differencing scheme for the equations of ideal magnetohydrodynamics, J. Comput. Phys., 75, 400-422, (1988) · Zbl 0637.76125 · doi:10.1016/0021-9991(88)90120-9
[10] Butcher, J. C., A history of Runge-Kutta methods, Appl. Numer. Math., 20, 247-260, (1996) · Zbl 0858.65073 · doi:10.1016/0168-9274(95)00108-5
[11] Cabral, B.; Leedom, L. C., Imaging vector fields using line integral convolution, SIGGRAPH’93, New York
[12] Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods: Fundamentals in Single Domains. Springer, Berlin (2006) · Zbl 1093.76002
[13] Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods: Evolution to Complex Geometries and Applications to Fluid Dynamics. Springer, Berlin (2007) · Zbl 1121.76001
[14] Carpenter, M. H.; Fisher, T. C.; Nielsen, E. J.; Frankel, S. H., Entropy stable spectral collocation schemes for the Navier-Stokes equations: discontinuous interfaces, SIAM J. Sci. Comput., 36, b835-b867, (2014) · Zbl 1457.65140 · doi:10.1137/130932193
[15] Chakravarthy, S.R., Osher, S.: High resolution applications of the Osher upwind scheme for the Euler equations. AIAA-83-1943 (1983)
[16] Chandrashekar, P., Kinetic energy preserving and entropy stable finite volume schemes for compressible Euler and Navier-Stokes equations, Commun. Comput. Phys., 14, 1252-1286, (2013) · Zbl 1373.76121 · doi:10.4208/cicp.170712.010313a
[17] Chandrashekar, P.; Klingenberg, C., Entropy stable finite volume scheme for ideal compressible MHD on 2-D Cartesian meshes, SIAM J. Numer. Anal., 54, 1313-1340, (2016) · Zbl 1381.76213 · doi:10.1137/15M1013626
[18] Chen, T.; Shu, C.-W., Entropy stable high order discontinuous Galerkin methods with suitable quadrature rules for hyperbolic conservation laws, J. Comput. Phys., 345, 427-461, (2017) · Zbl 1380.65253 · doi:10.1016/j.jcp.2017.05.025
[19] Courant, R., Friedrichs, K., Lewy, H.: Über die partiellen differenzengleichungen der mathematischen physik. Math. Ann. 100(1), 32-74 (1928) · JFM 54.0486.01 · doi:10.1007/BF01448839
[20] Courant, R.; Friedrichs, K.; Lewy, H., On partial differential equations of mathematical physics, IBM J. Res. Dev., 11, 215-234, (1967) · Zbl 0145.40402 · doi:10.1147/rd.112.0215
[21] Dafermos, C.: Hyperbolic Conservation Laws in Continuum Physics. Springer, Berlin (2000) · Zbl 0940.35002 · doi:10.1007/978-3-662-22019-1
[22] Dai, W.; Woodward, P. R., A simple finite difference scheme for multidimensional magnetohydrodynamical equations, J. Comput. Phys., 142, 331-369, (1998) · Zbl 0932.76048 · doi:10.1006/jcph.1998.5944
[23] Dedner, A.; Kemm, F.; Kröner, D.; Munz, C.-D.; Schnitzer, T.; Wesenberg, M., Hyperbolic divergence cleaning for the MHD equations, J. Comput. Phys., 175, 645-673, (2002) · Zbl 1059.76040 · doi:10.1006/jcph.2001.6961
[24] Derigs, D.; Winters, A. R.; Gassner, G. J.; Walch, S., A novel averaging technique for discrete entropy stable dissipation operators for ideal MHD, J. Comput. Phys., 330, 624-632, (2016) · Zbl 1378.76131 · doi:10.1016/j.jcp.2016.10.055
[25] Derigs, D.; Winters, A. R.; Gassner, G. J.; Walch, S., A novel high-order, entropy stable, 3D AMR MHD solver with guaranteed positive pressure, J. Comput. Phys., 317, 223-256, (2016) · Zbl 1349.76321 · doi:10.1016/j.jcp.2016.04.048
[26] Derigs, D., Winters, A.R., Gassner, G.J., Walch, S., Bohm, M.: Ideal GLM-MHD: About the entropy consistent nine-wave magnetic field divergence diminishing ideal magnetohydrodynamics equations. J. Comput. Phys. (2017, submitted). arXiv:1711.06269 · Zbl 1392.76037
[27] Dubey, A.; Reid, L. B.; Weide, K.; Antypas, K.; Ganapathy, M. K.; Riley, K.; Sheeler, D. J.; Siegal, A., Extensible component-based architecture for FLASH, a massively parallel, multiphysics simulation code, Parallel Comput., 35, 512-522, (2009) · doi:10.1016/j.parco.2009.08.001
[28] Emery, A. F., An evaluation of several differencing methods for inviscid fluid flow problems, J. Comput. Phys., 2, 306-331, (1968) · Zbl 0155.21102 · doi:10.1016/0021-9991(68)90060-0
[29] Evans, C. R.; Hawley, J. F., Simulation of magnetohydrodynamic flows—a constrained transport method, Astrophys. J., 332, 659-677, (1988) · doi:10.1086/166684
[30] Evans, L.C.: Partial Differential Equations. Am. Math. Soc., Providence (2012)
[31] Ferziger, J.H., Peric, M.: Computational Methods for Fluid Dynamics, 3rd edn. p. 10. Springer, Berlin (2013) · Zbl 0943.76001
[32] Fisher, T. C.; Carpenter, M. H., High-order entropy stable finite difference schemes for nonlinear conservation laws: finite domains, J. Comput. Phys., 252, 518-557, (2013) · Zbl 1349.65293 · doi:10.1016/j.jcp.2013.06.014
[33] Fisher, T. C.; Carpenter, M. H.; Nordström, J.; Yamaleev, N. K.; Swanson, C., Discretely conservative finite-difference formulations for nonlinear conservation laws in split form: theory and boundary conditions, J. Comput. Phys., 234, 353-375, (2013) · Zbl 1284.65102 · doi:10.1016/j.jcp.2012.09.026
[34] Fjordholm, U. S.; Mishra, S.; Tadmor, E., Well-balanced and energy stable schemes for the shallow water equations with discontinuous topography, J. Comput. Phys., 230, 5587-5609, (2011) · Zbl 1452.35149 · doi:10.1016/j.jcp.2011.03.042
[35] Fjordholm, U. S.; Mishra, S.; Tadmor, E., Arbitrarily high-order accurate entropy stable essentially nonoscillatory schemes for systems of conservation laws, SIAM J. Numer. Anal., 50, 544-573, (2012) · Zbl 1252.65150 · doi:10.1137/110836961
[36] Fjordholm, U. S.; Deep, R., A sign preserving WENO reconstruction method, J. Sci. Comput., 68, 42-63, (2016) · Zbl 1344.65079 · doi:10.1007/s10915-015-0128-y
[37] Frank, H. M.; Munz, C.-D., Direct aeroacoustic simulation of acoustic feedback phenomena on a side-view mirror, J. Sound Vib., 371, 132-149, (2016) · doi:10.1016/j.jsv.2016.02.014
[38] Freidberg, J.P.: Ideal Magnetohydrodynamics. Plenum Press, New York (1987) · doi:10.1007/978-1-4757-0836-3
[39] Friedrichs, K. O.; Lax, P. D., Systems of conversation equations with a convex extension, Proc. Natl. Acad. Sci., 68, 1686-1688, (1971) · Zbl 0229.35061 · doi:10.1073/pnas.68.8.1686
[40] Fryxell, B.; Olson, K.; Ricker, P.; Timmes, F. X.; Zingale, M.; Lamb, D. Q.; MacNeice, P.; Rosner, R.; Truran, J. W.; Tufo, H., FLASH: an adaptive mesh hydrodynamics code for modeling astrophysical thermonuclear flashes, Astrophys. J. Suppl. Ser., 131, 273-334, (2000) · doi:10.1086/317361
[41] Gassner, G. J., A skew-symmetric discontinuous Galerkin spectral element discretization and its relation to SBP-SAT finite difference methods, SIAM J. Sci. Comput., 35, a1233-a1253, (2013) · Zbl 1275.65065 · doi:10.1137/120890144
[42] Gassner, G. J.; Beck, A. D., On the accuracy of high-order discretizations for underresolved turbulence simulations, Theor. Comput. Fluid Dyn., 27, 221-237, (2013) · doi:10.1007/s00162-011-0253-7
[43] Gassner, G.J., Winters, A.R., Hindenlang, F.J., Kopriva, D.A.: The BR1 scheme is stable for the compressible Navier-Stokes equations. J. Sci. Comput. (2017, under revision). arXiv:1704.03646 · Zbl 1466.65131
[44] Gassner, G. J.; Winters, A. R.; Kopriva, D. A., Split form nodal discontinuous Galerkin schemes with summation-by-parts property for the compressible Euler equations, J. Comput. Phys., 327, 39-66, (2016) · Zbl 1422.65280 · doi:10.1016/j.jcp.2016.09.013
[45] Gassner, G. J.; Winters, A. R.; Kopriva, D. A., A well balanced and entropy conservative discontinuous Galerkin spectral element method for the shallow water equations, Appl. Math. Comput., 272, 291-308, (2016) · Zbl 1410.65393
[46] Gatto, A.; Walch, S.; Naab, T.; Girichidis, P.; Wünsch, R.; Glover, S. C.O.; Klessen, R. S.; Clark, P. C.; Peters, T.; Derigs, D.; Baczynski, C.; Puls, J., The SILCC project—III. regulation of star formation and outflows by stellar winds and supernovae, Mon. Not. R. Astron. Soc., 466, 1903-1924, (2017) · doi:10.1093/mnras/stw3209
[47] Girichidis, P.; Walch, S.; Naab, T.; Gatto, A.; Wünsch, R.; Glover, S. C.O.; Klessen, R. S.; Clark, P. C.; Peters, T.; Derigs, D.; Baczynski, C., The SILCC (simulating the lifecycle of molecular clouds) project—II. dynamical evolution of the supernova-driven ISM and the launching of outflows, Mon. Not. R. Astron. Soc., 456, 3432-3455, (2016) · doi:10.1093/mnras/stv2742
[48] Godunov, S. K., An interesting class of quasilinear systems, Dokl. Akad. Nauk SSSR, 139, 521-523, (1961) · Zbl 0125.06002
[49] Godunov, S. K., Symmetric form of the equations of magnetohydrodynamics, 26-34, (1972)
[50] Gottlieb, S.; Shu, C.-W.; Tadmor, E., Strong stability-preserving high-order time discretization methods, SIAM Rev., 43, 89-112, (2001) · Zbl 0967.65098 · doi:10.1137/S003614450036757X
[51] Harten, A., On the symmetric form of systems of conservation laws with entropy, J. Comput. Phys., 49, 151-164, (1983) · Zbl 0503.76088 · doi:10.1016/0021-9991(83)90118-3
[52] Helzel, C.; Rossmanith, J. A.; Taetz, B., A high-order unstaggered constrained-transport method for the three-dimensional ideal magnetohydrodynamic equations based on the method of lines, SIAM J. Sci. Comput., 35, a623-a651, (2013) · Zbl 1369.76062 · doi:10.1137/120870323
[53] Hiltebrand, A.; Mishra, S., Entropy stable shock capturing space-time discontinuous Galerkin schemes for systems of conservation laws, Numer. Math., 126, 130-151, (2014) · Zbl 1303.65083 · doi:10.1007/s00211-013-0558-0
[54] Hiltebrand, A.; Mishra, S., Entropy stability and well-balancedness of space-time DG for the shallow water equations with bottom topography, Netw. Heterog. Media, 11, 145-162, (2016) · Zbl 1431.76032 · doi:10.3934/nhm.2016.11.145
[55] Ismail, F.; Roe, P. L., Affordable, entropy-consistent Euler flux functions II: entropy production at shocks, J. Comput. Phys., 228, 5410-5436, (2009) · Zbl 1280.76015 · doi:10.1016/j.jcp.2009.04.021
[56] Jackson, J.D.: Classical Electrodynamics, 2nd edn. Wiley, New York (1975) · Zbl 0997.78500
[57] Jameson, A., Formulation of kinetic energy preserving conservative schemes for gas dynamics and direct numerical simulation of one-dimensional viscous compressible flow in a shock tube using entropy and kinetic energy preserving schemes, J. Sci. Comput., 34, 188-208, (2008) · Zbl 1133.76031 · doi:10.1007/s10915-007-9172-6
[58] Janhunen, P., A positive conservative method for magnetohydrodynamics based on HLL and roe methods, J. Comput. Phys., 160, 649-661, (2000) · Zbl 0967.76061 · doi:10.1006/jcph.2000.6479
[59] Jiang, G.; Shu, C.-W., On a cell entropy inequality for discontinuous Galerkin methods, Math. Comput., 62, 531-538, (1994) · Zbl 0801.65098 · doi:10.1090/S0025-5718-1994-1223232-7
[60] Johnson, C.: Numerical Solution of Partial Differential Equations by the Finite Element Method. Courier Corporation, North Chelmsford (2012)
[61] Kosmann-Schwarzbach, Y.: The Noether Theorems: Invariance and Conservation Laws in the Twentieth Century. Springer, Berlin (2011) · Zbl 1216.01011 · doi:10.1007/978-0-387-87868-3
[62] Kružkov, S. N., First order quasilinear equations in several independent variables, Math. USSR Sb., 10, 127-243, (1970) · Zbl 0215.16203 · doi:10.1070/SM1970v010n02ABEH002156
[63] Kuznetsov, N. N., Accuracy of some approximate methods for computing the weak solutions of a first-order quai-linear equation, USSR Comput. Math. Math. Phys., 16, 105-119, (1976) · Zbl 0381.35015 · doi:10.1016/0041-5553(76)90046-X
[64] Landau, L.D.: Fluid Mechanics, vol. 6. Pergamon, Elmsford (1959)
[65] Lax, P. D., Weak solutions of nonlinear hyperbolic conservation equations and their numerical computation, Commun. Pure Appl. Math., 7, 159-193, (1954) · Zbl 0055.19404 · doi:10.1002/cpa.3160070112
[66] Lax, P. D., Hyperbolic difference equations: a review of the Courant-Friedrichs-lewy paper in the light of recent developments, IBM J. Res. Dev., 11, 235-238, (1967) · Zbl 0233.65051 · doi:10.1147/rd.112.0235
[67] Lax, P. D.; Zarantonello, E. A. (ed.), Shock waves and entropy, 603-634, (1971), San Diego · Zbl 0268.35014 · doi:10.1016/B978-0-12-775850-3.50018-2
[68] Lax, P. D.; Wendroff, B., Systems of conservations laws, Commun. Pure Appl. Math., 13, 217-237, (1960) · Zbl 0152.44802 · doi:10.1002/cpa.3160130205
[69] LeFloch, P. G.; Rohde, C., High-order schemes, entropy inequalities, and nonclassical shocks, SIAM J. Numer. Anal., 37, 2023-2060, (2000) · Zbl 0959.35117 · doi:10.1137/S0036142998345256
[70] LeVeque, R.J.: Numerical Methods for Conservation Laws. Springer, Berlin (1992) · Zbl 0847.65053 · doi:10.1007/978-3-0348-8629-1
[71] LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems, vol. 31. Cambridge University Press, Cambridge (2002) · Zbl 1010.65040 · doi:10.1017/CBO9780511791253
[72] LeVeque, R.J.: Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-Dependent Problems. SIAM, Philadelphia (2007) · Zbl 1127.65080 · doi:10.1137/1.9780898717839
[73] Liu, Y.; Shu, C.-W.; Zhang, M., Entropy stable high order discontinuous Galerkin methods for ideal compressible MHD on structured meshes, J. Comput. Phys., 354, 163-178, (2017) · Zbl 1380.76162 · doi:10.1016/j.jcp.2017.10.043
[74] Londrillo, P.; Zanna, L. D., High-order upwind schemes for multidimensional magnetohydrodynamics, Astrophys. J., 530, 508-524, (2000) · doi:10.1086/308344
[75] Marder, B., A method for incorporating gauss’ law into electromagnetic PIC codes, J. Comput. Phys., 68, 48-55, (1987) · Zbl 0603.65079 · doi:10.1016/0021-9991(87)90043-X
[76] Maxima: Maxima, a computer algebra system. version 5.41.0, 2017
[77] Merriam, M. L., An entropy-based approach to nonlinear stability, NASA Tech. Memo., 101086, 1-154, (1989)
[78] Meschede, D.: Gerthsen Physik, 25th edn. Springer, Berlin (2015) · Zbl 1038.00501 · doi:10.1007/978-3-662-45977-5
[79] Mishra, S., Entropy stable high-order schemes for systems of conservation laws, (2011)
[80] Mock, M. S., Systems of conservation laws of mixed type, J. Differ. Equ., 37, 70-88, (1980) · Zbl 0413.34017 · doi:10.1016/0022-0396(80)90089-3
[81] Munz, C.-D., Westermann, T.: Numerische Behandlung gewöhnlicher und partieller Differenzialgleichungen: Ein interaktives Lehrbuch für Ingenieure (German Edition). 2. bearb. u. aktualisierte aufl. edition. Springer, Berlin (2009) · Zbl 1165.65001 · doi:10.1007/978-3-540-89253-3
[82] Noether, E.: Invariante variationsprobleme. Nachr. König. Gesell. Wissen. Göttingen, Math.-Phys. Kl. 235-257 (1918) · JFM 46.0770.01
[83] Olson, K.; Deane, A. (ed.); Ecer, A. (ed.); Brenner, G. (ed.); Emerson, D. (ed.); McDonough, J. (ed.); Periaux, J. (ed.); Satofuka, N. (ed.); Tromeur-Dervout, D. (ed.), PARAMESH: a parallel, adaptive grid tool, 341-348, (2006), Amsterdam · doi:10.1016/B978-044452206-1/50041-0
[84] Orszag, S. A.; Tang, C.-M., Small-scale structure of two-dimensional magnetohydrodynamic turbulence, J. Fluid Mech., 90, 129-143, (1979) · doi:10.1017/S002211207900210X
[85] Parsani, M.; Carpenter, M. H.; Fisher, T. C.; Nielsen, E. J., Entropy stable staggered grid discontinuous spectral collocation methods of any order for the compressible Navier-Stokes equations, SIAM J. Sci. Comput., 38, a3129-a3162, (2016) · Zbl 1457.65149 · doi:10.1137/15M1043510
[86] Powell, K.G.: An approximate Riemann solver for magnetohydrodynamics (that works in more than one dimension). Technical report, DTIC Document (1994)
[87] Powell, K. G.; Roe, P. L.; Linde, T. J.; Gombosi, T. I.; Zeeuw, D. L., A solution-adaptive upwind scheme for ideal magnetohydrodynamics, J. Comput. Phys., 154, 284-309, (1999) · Zbl 0952.76045 · doi:10.1006/jcph.1999.6299
[88] Quarteroni, A., Sacco, R., Saleri, F.: Numerical Mathematics, vol. 37. Springer, Berlin (2010) · Zbl 0957.65001
[89] Deep, R.; Chandrashekar, P., Entropy stable schemes for compressible Euler equations, Int. J. Numer. Anal. Model. Ser. B, 4, 335-352, (2013) · Zbl 1463.76036
[90] Ray, D.; Chandrashekar, P.; Fjordholm, U. S.; Mishra, S., Entropy stable scheme on two-dimensional unstructured grids for Euler equations, Commun. Comput. Phys., 19, 1111-1140, (2016) · Zbl 1373.76143 · doi:10.4208/cicp.scpde14.43s
[91] Roe, P. L., Approximate Riemann solvers, parameter vectors, and difference schemes, J. Comput. Phys., 135, 250-258, (1981) · Zbl 0890.65094 · doi:10.1006/jcph.1997.5705
[92] Roe, P. L., Characteristic-based schemes for the Euler equations, Annu. Rev. Fluid Mech., 18, 337-365, (1986) · Zbl 0624.76093 · doi:10.1146/annurev.fl.18.010186.002005
[93] Roe, P. L.; Balsara, D. S., Notes on the eigensystem of magnetohydrodynamics, SIAM J. Appl. Math., 56, 57-67, (1996) · Zbl 0845.35092 · doi:10.1137/S003613999427084X
[94] Schmidtmann, B.; Seibold, B.; Torrilhon, M., Relations between WENO3 and third-order limiting in finite volume methods, J. Sci. Comput., 68, 624-652, (2016) · Zbl 1371.65086 · doi:10.1007/s10915-015-0151-z
[95] Shen, J., Tang, T.: Spectral and High-Order Methods with Applications. Science Press, Beijing (2006) · Zbl 1234.65005
[96] Sod, G. A., A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws, J. Comput. Phys., 27, 1-31, (1978) · Zbl 0387.76063 · doi:10.1016/0021-9991(78)90023-2
[97] Strauss, W.A.: Partial Differential Equations. Wiley, New York (1992) · Zbl 0817.35001
[98] Strikwerda, J.C.: Finite Difference Schemes and Partial Differential Equations. SIAM, Philadelphia (2004) · Zbl 1071.65118
[99] Magnus, S., Entropy solutions of the compressible Euler equations, BIT Numer. Math., 56, 1479-1496, (2016) · Zbl 1362.35223 · doi:10.1007/s10543-016-0611-3
[100] Sweby, P. K., High resolution schemes using flux limiters for hyperbolic conservation laws, SIAM J. Numer. Anal., 21, 995-1011, (1984) · Zbl 0565.65048 · doi:10.1137/0721062
[101] Tadmor, E., Skew-selfadjoint form for systems of conservation laws, J. Math. Anal. Appl., 103, 428-442, (1984) · Zbl 0599.35102 · doi:10.1016/0022-247X(84)90139-2
[102] Tadmor, E., Entropy functions for symmetric systems of conservation laws, J. Math. Anal. Appl., 122, 355-359, (1987) · Zbl 0624.35057 · doi:10.1016/0022-247X(87)90265-4
[103] Tadmor, E., Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems, Acta Numer., 12, 451, (2003) · Zbl 1046.65078 · doi:10.1017/S0962492902000156
[104] Tadmor, E., Perfect derivatives, conservative differences and entropy stable computation of hyperbolic conservation laws, Discrete Contin. Dyn. Syst., Ser. A, 36, 4579-4598, (2016) · Zbl 1332.65129 · doi:10.3934/dcds.2016.36.4579
[105] Tipler, P.A., Mosca, G.: Physics for Scientists and Engineers, 6th edn. Freeman, New York (2007)
[106] Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction. Springer, Berlin (2009) · Zbl 1227.76006 · doi:10.1007/b79761
[107] Tóth, G., The \(∇ · {B}=0\) constraint in shock-capturing magnetohydrodynamics codes, J. Comput. Phys., 161, 605-652, (2000) · Zbl 0980.76051 · doi:10.1006/jcph.2000.6519
[108] Tricco, T. S.; Price, D. J.; Bate, M. R., Constrained hyperbolic divergence cleaning in smoothed particle magnetohydrodynamics with variable cleaning speeds, J. Comput. Phys., 322, 326-344, (2016) · Zbl 1351.76311 · doi:10.1016/j.jcp.2016.06.053
[109] Leer, B., Towards the ultimate conservative difference scheme. V. A second-order sequel to godunov’s method, J. Comput. Phys., 32, 101-136, (1979) · Zbl 1364.65223 · doi:10.1016/0021-9991(79)90145-1
[110] Waagan, K.; Federrath, C.; Klingenberg, C., A robust numerical scheme for highly compressible magnetohydrodynamics: nonlinear stability, implementation and tests, J. Comput. Phys., 230, 3331-3351, (2011) · Zbl 1316.76082 · doi:10.1016/j.jcp.2011.01.026
[111] Walch, S. K.; Girichidis, P.; Naab, T.; Gatto, A.; Glover, S. C.O.; Wünsch, R.; Klessen, R. S.; Clark, P. C.; Peters, T.; Derigs, D.; Baczynski, C., The SILCC (simulating the lifecycle of molecular clouds) project—I. chemical evolution of the supernova-driven ISM, Mon. Not. R. Astron. Soc., 454, 246-276, (2015) · doi:10.1093/mnras/stv1975
[112] Wintermeyer, N.; Winters, A. R.; Gassner, G. J.; Kopriva, D. A., An entropy stable discontinuous Galerkin method for the two dimensional shallow water equations with discontinuous bathymetry, J. Comput. Phys., 340, 200-242, (2017) · Zbl 1380.65291 · doi:10.1016/j.jcp.2017.03.036
[113] Winters, A. R.; Derigs, D.; Gassner, G. J.; Walch, S., A uniquely defined entropy stable matrix dissipation operator for high Mach number ideal MHD and compressible Euler simulations, J. Comput. Phys., 332, 274-289, (2017) · Zbl 1378.76144 · doi:10.1016/j.jcp.2016.12.006
[114] Winters, A. R.; Gassner, G. J., Affordable, entropy conserving and entropy stable flux functions for the ideal MHD equations, J. Comput. Phys., 304, 72-108, (2016) · Zbl 1349.76407 · doi:10.1016/j.jcp.2015.09.055
[115] Winters, A. R.; Gassner, G. J., An entropy stable finite volume scheme for the equations of shallow water magnetohydrodynamics, J. Sci. Comput., 67, 514-539, (2016) · Zbl 1381.76227 · doi:10.1007/s10915-015-0092-6
[116] Woodward, P.; Colella, P., The numerical simulation of two-dimensional fluid flow with strong shocks, J. Comput. Phys., 54, 115-173, (1984) · Zbl 0573.76057 · doi:10.1016/0021-9991(84)90142-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.