×

Solution of 2D state space continuous-time conformable fractional linear system using Laplace and Sumudu transform. (English) Zbl 1487.35394

Summary: The present research paper deals with the effectiveness of the solvability of two dimensional (\(2D\)) models. This study explores the new fractional derivatives and extended transforms for a class of bidimensional models. A \(2D\) Sumudu and \(2D\) Laplace transforms are used to establish the solution of the continuous Fornasini-Marchesini models by the use of the conformable derivatives. A new definition and properties of Sumudu in two dimensional case are given. Finally, an illustrative example is given to show the accuracy and applicability of the developed methods.

MSC:

35R11 Fractional partial differential equations
35A22 Transform methods (e.g., integral transforms) applied to PDEs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] D. Idczak, R. Kamocki, and M. Majewski, “On a fractional continuous counterpart of Fornasini-Marchesini model nDS 13,” in: Proceedings of the 8th International Workshop on Multidimensional Systems, Erlangen (2013), pp. 1-5.
[2] Belgacem, FBM; Karaballi, AA; Kalla, SL, Analytical investigations of the sumudu transform and applications to integral production equations, Mathematical Problems in Engineering, 3, 103-118 (2003) · Zbl 1068.44001 · doi:10.1155/S1024123X03207018
[3] F. Cacace, L. Farina, R. Setola, and A. Germani, Positive Systems, Theory and Applications, Springer International Publishing, Switzerland (2017). · Zbl 1372.93003
[4] Galkowski, K., State-Space Realizations of Linear 2-D Systems with Extensions to the General nD case (2001), London: Springer-Verlag, London · Zbl 1007.93001
[5] H. Eltayeb, I. Bachar, and A. KılıçmanOn, “Conformable Double Laplace Transform and One Dimensional Fractional Coupled Burgers Equation,” Symmetry., 11, No. 3, 417 (2019). · Zbl 1423.35394
[6] Kurek, JE, The general state-space model for a two-dimensional linear digital system, IEEE Trans. Autom. Control, 30, 2, 600-602 (1985) · Zbl 0561.93034 · doi:10.1109/TAC.1985.1103998
[7] K. Rogowski, “Solution to the Fractional-Order 2D Continuous Systems Described by the Second Fornasini-Marchesini Model,” IFAC Papers OnLine, 50, No. 1, 9748-9752 (2017).
[8] K. Rogowski, “General Response Formula for Fractional 2D Continuous-Time Linear Systems Described by the Roesser Model,” Acta Mechanica et Automatica, 5, No. 2, 112-116 (2011).
[9] Lazo, JM; Torres, FM, Variational Calculus with Conformable Fractional Derivatives, IEEE/CAA J. Automatica Sinica, 4, 2, 340-352 (2017) · doi:10.1109/JAS.2016.7510160
[10] Ozkan, O.; Kurt, A., On conformable double Laplace transform, Opt Quant Electron., 50, 103 (2018) · doi:10.1007/s11082-018-1372-9
[11] Ozkan, O.; Kurt, A., Conformable fractional double Laplace transform and its applications to fractional partial integro-differential equations, J. Fractional Calculus and Applications, 11, 1, 70-81 (2020) · Zbl 1513.44007
[12] R. Khalil, M. Al Horani, A. Yousef a, and M. Sababhehb, “A new definition of fractional derivative,” J. Computational and Applied Mathematics, 265, 65-70 (2014). · Zbl 1297.26013
[13] Abdeljawad, T., On conformable fractional calculus, J. Computational and Applied Mathematics, 279, 57-66 (2015) · Zbl 1304.26004 · doi:10.1016/j.cam.2014.10.016
[14] Kaczorek, T., Selected Problems of Fractional Systems Theory (2011), Berlin: Springer-Verlag, Berlin · Zbl 1221.93002 · doi:10.1007/978-3-642-20502-6
[15] Kaczorek, T., Positive 1 D and 2D Systems (2002), London: Springer-Verlag, London · Zbl 1005.68175 · doi:10.1007/978-1-4471-0221-2
[16] Kaczorek, T.; Rogowski, K., Fractional Linear Systems and Electrical Circuits (2015), Switzerland: Springer International Publishing, Switzerland · Zbl 1354.93001 · doi:10.1007/978-3-319-11361-6
[17] Z. Al-Zhour, F. Alrawajeh, N. Al-Mutairi and R. Alkhasawneh, “New results on the conformable fractional sumudu transform:theories and applications.”, International J. Analysis and Applications, 17, No 6, 1019-1033 (2019).
[18] Abbas, S.; Banerjee, M.; Momani, S., Dynamical analysis of fractional-order modified logistic model, Comput. Math. Appl., 62, 1098-1104 (2011) · Zbl 1228.34008 · doi:10.1016/j.camwa.2011.03.072
[19] Arafa, AAM; Rida, SZ; Khalil, M., The effect of anti-viral drug treatment of human immunodeficiencey virus type 1 (HIV-1) described by a fractional order model, Appl. Math. Model., 37, 2189-2196 (2013) · Zbl 1349.92135 · doi:10.1016/j.apm.2012.05.002
[20] El-Shahed, M.; Salem, A., On the generalized Navier-stokes equations, Appl. Math. Comput., 156, 287-293 (2004) · Zbl 1134.76323
[21] Hashemi, MS, Invariant subspaces admitted by fractional differential equations with conformable derivatives, Chaos Solutions Fractal., 107, 161-169 (2018) · Zbl 1381.34014 · doi:10.1016/j.chaos.2018.01.002
[22] Hashemi, MS, Some new exact solutions of (2+1)-dimensional nonlinear Heisenberg ferromagnetic spin chain with the conformable time fractional derivative, Opt. Quant. Electron., 107, 50-79 (2018)
[23] Parra, GG; Arenas, AJ; Chen-Charpentier, BM, A fractional order epidemic model for the simulation of outbreaks of influenza A(H1N1), Math. Method. Appl. Sci., 37, 2218-2226 (2014) · Zbl 1300.92099 · doi:10.1002/mma.2968
[24] Sherief, HH; Abd El-Latief, AM, Application of fractional order theory of thermo elasticity to a 2D problem for a half-space, Appl. Math. Comput., 248, 584-592 (2014) · Zbl 1338.74034
[25] V. E. Tarasov, “Fractional statistical mechanics,” Chaos,16, No. 3, 033108 (2006). · Zbl 1152.82325
[26] Yan, Y.; Kou, C., Stability analysis for a fractional differential model of HIV infection of CD4+ T-cells with time delay, Math. Comput. Simulat., 82, 1572-1585 (2012) · Zbl 1253.92037 · doi:10.1016/j.matcom.2012.01.004
[27] Atanackovic, TM; Stankovic, B., An expansion formula for fractional derivatives and its application, Fract. Calc. Appl. Anal., 7, 365-378 (2004) · Zbl 1128.26003
[28] Djordjevic, VD; Jaric, J.; Fabry, B.; Fredberg, JJ; Stamenovi, D., Fractional derivatives embody essential features of cell rheological behavior, Ann. Biomed. Eng., 31, 692-699 (2003) · doi:10.1114/1.1574026
[29] Monje, CA; Chen, Y.; Vinagre, BM; Xue, D.; Feliu-Batlle, V., Fractional-oder systems and controls (2010), Springer, London: Fundamentals and Applications, Springer, London · Zbl 1211.93002 · doi:10.1007/978-1-84996-335-0
[30] Podlubny, I., Fractional Differential Equations (1999), San Diego: Academic Press, San Diego · Zbl 0924.34008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.