×

Soret and Dufour effect on double diffusion mixed convection from a vertical surface in a porous medium saturated with a non-Newtonian fluid. (English) Zbl 1274.76298

Summary: A non-similar boundary layer analysis is presented to study the flow, heat and mass transfer characteristics of non-Darcian mixed convection of a non-Newtonian fluid from a vertical isothermal plate embedded in a homogeneous porous medium with the effect of Soret and Dufour and in the presence of either surface injection or suction. The value of the mixed-convection parameter lies between 0 and 1. In addition, the power-law model is used for non-Newtonian fluids with exponent \(n<1\) for pseudoplastics \(n=1\) for Newtonian fluids and \(n>1\) for dilatant fluids. Furthermore, the coordinates and dependent variables are transformed to yield computationally efficient numerical solutions that are valid over the entire range of mixed convection, from the pure forced-convection limit to the pure free-convection limit, and the whole domain of non-Newtonian fluids, from pseudoplastics to dilatant fluids. The numerical solution of the problem is derived using a Runge-Kutta integration scheme with Newton-Raphson shooting technique. Distributions for velocity, temperature and concentration, as well as for the rate of wall heat and mass transfer, have been obtained and discussed for various physical parametric values.

MSC:

76R05 Forced convection
76R10 Free convection
76A05 Non-Newtonian fluids
76S05 Flows in porous media; filtration; seepage
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Adrian, P.: Influence of a magnetic field on heat and mass transfer by natural convection from vertical surfaces in porous media considering Sorét and dufour effects, Int. J. Heat mass transfer 47, 1467-1472 (2004) · Zbl 1045.76568 · doi:10.1016/j.ijheatmasstransfer.2003.09.017
[2] Kafoussias, N. G.; Williams, E. W.: Thermal-diffusion and diffusion thermo effects on mixed free-forced convective and mass transfer boundary layer flow with temperature dependent viscosity, Int. J. Eng. sci. 33, 1369-1384 (1995) · Zbl 0899.76325 · doi:10.1016/0020-7225(94)00132-4
[3] Alam, M. S.; Ferdows, M.; Ota, M.; Maleque, M. A.: Dufour and Sorét effects on steady free convection and mass transfer flow past a semi-infinite vertical porous plate in a porous medium, Int. J. Appl. mech. Eng. 11, No. 3, 535-545 (2006) · Zbl 1195.76364
[4] Weaver, J. A.; Viskanta, R.: Natural convection due to horizontal temperature and concentration \(gradients(2)\): species interdiffusion, Sorét and dufour effects, Int. J. Heat mass transfer 34, 3121-3133 (1991) · Zbl 0744.76106 · doi:10.1016/0017-9310(91)90081-O
[5] Anghel, M.; Takhar, H. S.; Pop, I.: Studia universitatis babes-bolyai, Mathematica, Xlv, 11-22 (2000)
[6] Alam, M. S.; Rahman, M. M.; Samad, M. A.: Dufour and Sorét effects on unsteady MHD free convection and mass transfer flow past a vertical porous plate in a porous medium, Nonlinear anal.: model. Control 11, 217-226 (2006) · Zbl 1202.76131
[7] Lin, H. T.; Shih, Y. P.: Combined laminar free and forced convection from a vertical plate to power-law fluids, Chem. eng. Commun. 7, 327-334 (1980)
[8] Kim, H. W.; Jeng, D. R.; Dewitt, K. J.: Momentum and heat transfer in power-law fluid flow over a two-dimensional or axisymmetric bodies, Int. J. Heat mass transfer 26, 245-259 (1993) · Zbl 0515.76013 · doi:10.1016/S0017-9310(83)80029-5
[9] Huang, M. J.; Chen, C. K.: Numerical analysis for forced convection over a fiat plate in power law fluids, Int. comm. Heat mass transfer 11, 361-368 (1984)
[10] Nakayama, A.; Shenoy, A. V.; Koyama, H.: An analysis for forced convection heat transfer from external surfaces to non-Newtonian fluids, Warme-und stoffubertragung 20, 219-227 (1986)
[11] Kleinstreuer, C.; Wang, T. Y.: Heat transfer between rotating spheres and flowing power-law fluids with suction and injection, Int. J. Heat fluid flow 9, 328-333 (1988)
[12] Wang, T. Y.; Kleinstreuer, C.: Combined free-forced convection heat transfer between vertical slender cylinders and power-law fluids, Int. J. Heat mass transfer 31, 91-98 (1988)
[13] Wang, T. Y.; Kleinstreuer, C.: Mixed thermal convection of power-law fluids past bodies with uniform fluid injection or suction, Trans. J. Heat transfer 112, 151-156 (1990)
[14] Gorla, R. S. R.; Slaouti, A.; Takhar, H. S.: Mixed convection in non-Newtonian fluids along a vertical plate in porous media with surface mass transfer, Int. J. Numer. meth. Heat fluid flow 7, 596-608 (1997) · Zbl 0954.76518 · doi:10.1108/09615539710170772
[15] Gorla, R. S. R.; Shanmugam, K.; Kumari, M.: Mixed convection in non-Newtonian fluids along nonisothermal horizontal surfaces in porous media, Heat mass transfer 33, 281-286 (1998)
[16] Gorla, R. S. R.; Kumari, M.: Nonsimilar solutions for mixed convection in non-Newtonian fluids along a wedge with variable surface temperature, Int. J. Numer. meth. Heat fluid flow 9, 601-611 (1999) · Zbl 1057.76587 · doi:10.1108/09615539910276133
[17] Ibrahim, F. S.; Abdel-Gaid, S. M.; Gorla, R. S. R.: Non-Darcy mixed convection flow along a vertical plate embedded in a non-Newtonian fluid saturated porous medium with surface mass transfer, Int. J. Numer. meth. Heat fluid flow 10, 397-408 (2000) · Zbl 0948.76611 · doi:10.1108/09615530010327387
[18] Chen, H. T.; Chen, C. K.: Free convection of non-Newtonian fluids along a vertical plate embedded in a porous medium, trans. Of ASME, J. heat transfer 110, 257-260 (1988)
[19] Nakayama, A.; Koyama, H.: Buoyancy-induced flow of non-Newtonian fluids over a non-isothermal body of arbitrary shape in a fluid-saturated porous medium, Appl. sci. Res. 48, 55-70 (1991) · Zbl 0714.76006 · doi:10.1007/BF01998665
[20] Christopher, R. H.; Middleman, S.: Power law fluid flow through a packed tube, Ind. eng. Chem. fundament. 4, 422-426 (1959)
[21] Dharmadhikari, R. V.; Kale, D. D.: The flow of non-Newtonian fluids through porous media, Chem. eng. Sci. 40, 527-529 (1965)
[22] Ingham, D. B.: An exact solution for non-Darcy free convection from a horizontal line source heat, Therm. fluid dynam. 22, 125-127 (1988)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.