×

Hardy inequalities and non-explosion results for semigroups. (English) Zbl 1335.31007

Summary: We prove non-explosion results for Schrödinger perturbations of symmetric transition densities and Hardy inequalities for their quadratic forms by using explicit supermedian functions of their semigroups.

MSC:

31C25 Dirichlet forms
31C05 Harmonic, subharmonic, superharmonic functions on other spaces
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Ancona, A.: On strong barriers and an inequality of Hardy for domains in Rn. J. London Math. Soc. (2) 34(2), 274-290 (1986) · Zbl 0629.31002 · doi:10.1112/jlms/s2-34.2.274
[2] Andrews, G.E., Askey, R., Roy, R.: Special functions, volume 71 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge (1999)
[3] Baras, P., Goldstein, J.A.: The heat equation with a singular potential. Trans. Amer. Math. Soc. 284(1), 121-139 (1984) · Zbl 0556.35063 · doi:10.1090/S0002-9947-1984-0742415-3
[4] Beckner, W.: Pitt’s inequality and the fractional Laplacian: sharp error estimates. Forum Math. 24(1), 177-209 (2012) · Zbl 1244.42005 · doi:10.1515/form.2011.056
[5] Bogdan, K., Byczkowski, T., Kulczycki, T., Ryznar, M., Song, R., Vondraċek, Z.: Potential analysis of stable processes and its extensions, volume 1980 of Lecture Notes in Mathematics. Springer, Berlin (2009). Edited by Piotr Graczyk and Andrzej Stos
[6] Bogdan, K., Dyda, B.: The best constant in a fractional Hardy inequality. Math. Nachr. 284(5-6), 629-638 (2011) · Zbl 1217.26025 · doi:10.1002/mana.200810109
[7] Bogdan, K, Grzywny, T., Ryznar, M.: Density and tails of unimodal convolution semigroups. J. Funct. Anal. 266(6), 3543-3571 (2014) · Zbl 1290.60002 · doi:10.1016/j.jfa.2014.01.007
[8] Bogdan, K., Hansen, W., Jakubowski, T.: Time-dependent Schrödinger perturbations of transition densities. Studia Math. 189(3), 235-254 (2008) · Zbl 1161.47009 · doi:10.4064/sm189-3-3
[9] Chen, Z.-Q., Kim, P., Kumagai, T.: On heat kernel estimates and parabolic Harnack inequality for jump processes on metric measure spaces. Acta Math. Sin. (Engl. Ser.) 25(7), 1067-1086 (2009) · Zbl 1171.60373 · doi:10.1007/s10114-009-8576-7
[10] Chen, Z.-Q., Kim, P., Kumagai, T.: Global heat kernel estimates for symmetric jump processes. Trans. Amer. Math. Soc. 363(9), 5021-5055 (2011) · Zbl 1234.60088 · doi:10.1090/S0002-9947-2011-05408-5
[11] Chen, Z.-Q., Kumagai, T.: Heat kernel estimates for jump processes of mixed types on metric measure spaces. Probab. Theory Related Fields 140(1-2), 277-317 (2008) · Zbl 1131.60076
[12] Chen, Z.-Q., Song, R.: Hardy inequality for censored stable processes. Tohoku Math. J. (2) 55(3), 439-450 (2003) · Zbl 1070.46021 · doi:10.2748/tmj/1113247482
[13] Dyda, B.: Fractional calculus for power functions and eigenvalues of the fractional Laplacian. Fract. Calc. Appl. Anal. 15(4), 536-555 (2012) · Zbl 1312.35176 · doi:10.2478/s13540-012-0038-8
[14] Dyda, B., Vähäkangas, A.V.: A framework for fractional Hardy inequalities. Ann. Acad. Sci. Fenn., Math. 39(2), 675-689 (2014) · Zbl 1320.26023 · doi:10.5186/aasfm.2014.3943
[15] Filippas, S., Tertikas, A.: Optimizing improved Hardy inequalities. J. Funct. Anal. 192(1), 186-233 (2002) · Zbl 1030.26018 · doi:10.1006/jfan.2001.3900
[16] Fitzsimmons, P.J.: Hardy’s inequality for Dirichlet forms. J. Math. Anal. Appl. 250(2), 548-560 (2000) · Zbl 0979.26007 · doi:10.1006/jmaa.2000.6985
[17] Frank, R.L., Lieb, E.H., Seiringer, R.: Hardy-Lieb-Thirring inequalities for fractional Schrödinger operators. J. Amer. Math. Soc. 21(4), 925-950 (2008) · Zbl 1202.35146 · doi:10.1090/S0894-0347-07-00582-6
[18] Frank, R.L., Seiringer, R.: Non-linear ground state representations and sharp Hardy inequalities. J. Funct. Anal. 255(12), 3407-3430 (2008) · Zbl 1189.26031 · doi:10.1016/j.jfa.2008.05.015
[19] Fukushima, M., Oshima, Y., Takeda, M.: Dirichlet forms symmetric Markov processes, volume 19 of de Gruyter Studies in Mathematics. Walter de Gruyter & Co. (2011) · Zbl 1227.31001
[20] Herbst, I.W.: Spectral theory of the operator (p2+m2)1/2−Ze2/r. Comm. Math. Phys. 53(3), 285-294 (1977) · Zbl 0375.35047 · doi:10.1007/BF01609852
[21] Hille, E., Phillips, R.S.: Functional analysis and semi-groups. American Mathematical Society, Providence, R. I. (1974). Third printing of the revised edition of 1957, American Mathematical Society Colloquium Publications, Vol. XXXI · Zbl 0392.46001
[22] Jakubowski, T.: Fundamental solution of the fractional diffusion equation with a singular drift. preprint (2014) · Zbl 0556.35063
[23] Kałamajska, A., Pietruska-Pałuba, K.: On a variant of the Gagliardo-Nirenberg inequality deduced from the Hardy inequality. Bull. Pol. Acad. Sci. Math. 59(2), 133-149 (2011) · Zbl 1234.26046 · doi:10.4064/ba59-2-4
[24] Kim, P., Song, R., Vondraċek, Z.: Global uniform boundary Harnack principle with explicit decay rate and its application. Stochastic Process. Appl. 124(1), 235-267 (2014) · Zbl 1296.60198 · doi:10.1016/j.spa.2013.07.007
[25] Lax, P.D.: Functional analysis. Pure and Applied Mathematics (New York). Wiley, New York (2002) · Zbl 1009.47001
[26] Maz’ya, V.: Sobolev spaces with applications to elliptic partial differential equations, volume 342 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Heidelberg (2011). augmented edition · Zbl 1217.46002
[27] Pilarczyk, D.: Self-similar asymptotics of solutions to heat equation with inverse square potential. J. Evol. Equ. 13(1), 69-87 (2013) · Zbl 1263.35149 · doi:10.1007/s00028-012-0169-8
[28] Schilling, R.L., Song, R., Z. Vondraċek: Bernstein functions volume 37 of de Gruyter Studies in Mathematics, second edition. Walter de Gruyter & Co., Berlin (2012). Theory and applications
[29] Skrzypczak, I.: Hardy-type inequalities derived from p-harmonic problems. Nonlinear Anal. 93, 30-50 (2013) · Zbl 1282.26040 · doi:10.1016/j.na.2013.07.006
[30] Vazquez, J.L., Zuazua, E.: The Hardy inequality and the asymptotic behaviour of the heat equation with an inverse-square potential. J. Funct. Anal. 173(1), 103-153 (2000) · Zbl 0953.35053 · doi:10.1006/jfan.1999.3556
[31] Zähle, M.: Potential spaces and traces of Lévy processes on h-sets. Izv. Nats. Akad. Nauk Armenii Mat. 44(2), 67-100 (2009) · Zbl 1302.60076
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.