×

Hamilton-Jacobi wave theory in manifestly-covariant classical and quantum gravity. (English) Zbl 1425.83018

Summary: The axiomatic geometric structure which lays at the basis of Covariant Classical and Quantum Gravity Theory is investigated. This refers specifically to fundamental aspects of the manifestly-covariant Hamiltonian representation of General Relativity which has recently been developed in the framework of a synchronous deDonder-Weyl variational formulation (2015–2019). In such a setting, the canonical variables defining the canonical state acquire different tensorial orders, with the momentum conjugate to the field variable \(g_{\mu \nu}\) being realized by the third-order 4-tensor \(\Pi_{\mu \nu}^\alpha\). It is shown that this generates a corresponding Hamilton-Jacobi theory in which the Hamilton principal function is a 4-tensor \(S^\alpha\). However, in order to express the Hamilton equations as evolution equations and apply standard quantization methods, the canonical variables must have the same tensorial dimension. This can be achieved by projection of the canonical momentum field along prescribed tensorial directions associated with geodesic trajectories defined with respect to the background space-time for either classical test particles or raylights. It is proved that this permits to recover a Hamilton principal function in the appropriate form of 4-scalar type. The corresponding Hamilton-Jacobi wave theory is studied and implications for the manifestly-covariant quantum gravity theory are discussed. This concerns in particular the possibility of achieving at quantum level physical solutions describing massive or massless quanta of the gravitational field.

MSC:

83C45 Quantization of the gravitational field
70H05 Hamilton’s equations
70H20 Hamilton-Jacobi equations in mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] De Donder, T.; ; Théorie Invariantive Du Calcul des Variations: Paris, France 1930; . · JFM 56.1081.01
[2] Weyl, H.; Geodesic Fields in the Calculus of Variation for Multiple Integrals; Ann. Math.: 1935; Volume 36 ,607. · JFM 61.0554.04
[3] Saunders, D.J.; ; The Geometry of Jet Bundles: Cambridge, UK 1989; . · Zbl 0665.58002
[4] Sardanashvily, G.; ; Generalized Hamiltonian Formalism for Field Theory: Singapore 1995; . · Zbl 0941.70500
[5] Echeverría-Enríquez, A.; Muñoz-Lecanda, M.C.; Román-Roy, N.; Geometry of Lagrangian first-order classical field theories; Fortschr. Phys.: 1996; Volume 44 ,235. · Zbl 0964.58015
[6] Kanatchikov, I.V.; Canonical structure of classical field theory in the polymomentum phase space; Rep. Math. Phys.: 1998; Volume 41 ,49. · Zbl 0947.70020
[7] Forger, M.; Paufler, C.; Romer, H.; The Poisson bracket for Poisson forms in multisymplectic field theory; Rev. Math. Phys.: 2003; Volume 15 ,705. · Zbl 1113.70017
[8] Kisil, V.V.; p-Mechanics as a physical theory: An introduction; J. Phys. A Math. Gen.: 2004; Volume 37 ,183. · Zbl 1045.81032
[9] Struckmeier, J.; Redelbach, A.; Covariant Hamiltonian field theory; Int. J. Mod. Phys. E: 2008; Volume 17 ,435.
[10] Cremaschini, C.; Tessarotto, M.; Synchronous Lagrangian variational principles in General Relativity; Eur. Phys. J. Plus: 2015; Volume 130 ,123. · Zbl 1348.83019
[11] Dirac, P.A.M.; Generalized Hamiltonian Dynamics; Can. J. Math.: 1950; Volume 2 ,129. · Zbl 0036.14104
[12] Sundermeyer, K.; ; Constrained Dynamics: Berlin, Germany 1982; . · Zbl 0508.58002
[13] Einstein, A.; ; The Meaning of Relativity: Princeton, NJ, USA 2004; . · Zbl 0063.01229
[14] Landau, L.D.; Lifschitz, E.M.; ; Field Theory, Theoretical Physics: New York, NY, USA 1957; Volume Volume 2 .
[15] Misner, C.W.; Thorne, K.S.; Wheeler, J.A.; ; Gravitation: Princeton, NJ, USA 1973; . · Zbl 1375.83002
[16] Tessarotto, M.; Cremaschini, C.; Theory of Nonlocal Point Transformations in General Relativity; Adv. Math. Phys.: 2016; Volume 2016 ,9619326. · Zbl 1348.83019
[17] Jordi, G.; Narciso, R.R.; Multisymplectic unified formalism for Einstein-Hilbert gravity; J. Math. Phys.: 2018; Volume 59 ,032502. · Zbl 1387.83006
[18] Cremaschini, C.; Tessarotto, M.; Manifest covariant Hamiltonian theory of General Relativity; Appl. Phys. Res.: 2016; Volume 8 ,2. · Zbl 1348.83019
[19] Cremaschini, C.; Tessarotto, M.; Hamiltonian approach to GR—Part 1: Covariant theory of classical gravity; Eur. Phys. J. C: 2017; Volume 77 ,329. · Zbl 1425.83018
[20] Cremaschini, C.; Tessarotto, M.; Hamiltonian approach to GR—Part 2: Covariant theory of quantum gravity; Eur. Phys. J. C: 2017; Volume 77 ,330. · Zbl 1425.83018
[21] Cremaschini, C.; Tessarotto, M.; Quantum-wave equation and Heisenberg inequalities of covariant quantum gravity; Entropy: 2017; Volume 19 . · Zbl 1369.81038
[22] Tessarotto, M.; Cremaschini, C.; Generalized Lagrangian path approach to manifestly-covariant quantum gravity theory; Entropy: 2018; Volume 20 . · Zbl 1369.81038
[23] Tessarotto, M.; Cremaschini, C.; Role of quantum entropy and establishment of H-theorems in the presence of graviton sinks for manifestly-covariant quantum gravity; Entropy: 2019; Volume 21 . · Zbl 1369.81038
[24] Cremaschini, C.; Tessarotto, M.; Space-time second-quantization effects and the quantum origin of cosmological constant in covariant quantum gravity; Symmetry: 2018; Volume 10 . · Zbl 1369.81038
[25] Arnowitt, R.; Deser, S.; Misner, C.W.; ; Gravitation: An Introduction to Current Research: New York, NY, USA 1962; . · Zbl 0092.20705
[26] Etienne, Z.B.; Liu, Y.T.; Shapiro, S.L.; Relativistic magnetohydrodynamics in dynamical spacetimes: A new AMR implementation; Phys. Rev. D: 2010; Volume 82 ,084031.
[27] Alcubierre, M.; ; Introduction to 3+1 Numerical Relativity: Oxford, UK 2008; . · Zbl 1140.83002
[28] Gheorghiu, T.; Vacaru, O.; Vacaru, S.; Off-diagonal deformations of kerr black holes in Einstein and modified massive gravity and higher dimensions; Eur. Phys. J. C: 2014; Volume 74 ,3152.
[29] Messiah, A.; ; Quantum Mechanics: New York, NY, USA 1999; . · Zbl 0102.42602
[30] Cremaschini, C.; Tessarotto, M.; Quantum theory of extended particle dynamics in the presence of EM radiation-reaction; Eur. Phys. J. Plus: 2015; Volume 130 ,166. · Zbl 1342.83018
[31] Tessarotto, M.; Cremaschini, C.; Generalized Lagrangian-path representation of non-relativistic quantum mechanics; Found. Phys.: 2016; Volume 46 ,1022-1061. · Zbl 1369.81038
[32] Goldstein, H.; ; Classical Mechanics: Reading, MA, USA 1980; . · Zbl 0491.70001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.