×

Particle grouping in oscillating flows. (English) Zbl 1317.76042

Summary: An equation describing the dynamics of spherical particles in an oscillating Stokesian flow in the frame of reference moving with the phase velocity of the wave, and only taking into account the contribution of the drag force, is simplified in two limiting cases. Firstly, the case when Stokes numbers are small is considered. Secondly, the analysis focuses on the case when the initial location of the particles is close to the location where the particles are grouped (their velocities and accelerations in the wave frame of reference are equal to zero), \(x_{\lim}\). This is followed by an analysis of the dynamics of non-Stokesian particles. In all cases, the analytical results are validated against the results of numerical solution of the equation of particle motion. Three types of trajectories are predicted when particles approach \(x_{\lim}\): the trajectories describing the monotonic approach to \(x_{\lim}\), the trajectories describing the approach to \(x_{\lim}\) with oscillations and trajectories repelled from \(x_{\lim}\). These are identified with stable nodes, stable foci and saddles. The trajectories in the zone between stable nodes and foci are identified as stable stars. Using Dulac’s criterion, it is pointed out that none of the particle trajectories in the position-velocity plane can be closed. This result is illustrated by the trajectories calculated using the numerical solution of the equation for particle dynamics for various parameter values.

MSC:

76D99 Incompressible viscous fluids
76T99 Multiphase and multicomponent flows
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Kaplanski, F.; Sazhin, S. S.; Rudi, Y., Particle dynamics and mixing in an oscillating viscous pair, Proc. Estonian Acad. Sci. Eng., 11, 2, 140-153 (2005)
[2] Pozorski, J.; Sazhin, S. S.; Wacławczyk, M.; Crua, C.; Kennaird, D.; Heikal, M. R., Spray penetration in a turbulent flow, Flow, Turbulence and Combustion, 68, 2, 153-165 (2002) · Zbl 1113.76386
[3] Sazhin, S. S.; Kaplanski, F.; Feng, G.; Heikal, M. R.; Bowen, P. J., A fuel spray induced vortex ring, Fuel, 80, 13, 1871-1883 (2001) · Zbl 1094.76563
[4] (Malissa, H., Analysis of Airborne Particles by Physics Methods (1978), CRC Press: CRC Press Florida)
[5] (Harrison, R. M.; van Grieken, R. E., Atmospheric Particles (1998), John Wiley & Sons: John Wiley & Sons Chichester)
[6] (Walton, W. H., Inhaled Particles, vols. 1 and 2 (1977), Pergamon Press: Pergamon Press Oxford)
[7] Eastwood, P., Critical Topics in Exhaust Gas Aftertreatment (2000), Research Studies Press Ltd
[8] P.F. Flynn, R.P. Durrett, G.L. Hunter, A.O. zur Loye, O.C. Akinyemi, J.E. Dec, C.K. Westbrook, Diesel combustion: an integrated view combining laser diagnostics, chemical kinetics, and empirical validation, SAE report 1999-01-0509, 1999; P.F. Flynn, R.P. Durrett, G.L. Hunter, A.O. zur Loye, O.C. Akinyemi, J.E. Dec, C.K. Westbrook, Diesel combustion: an integrated view combining laser diagnostics, chemical kinetics, and empirical validation, SAE report 1999-01-0509, 1999
[9] Sazhin, S. S., Advanced models of fuel droplet heating and evaporation, Progr. Energy Combust. Sci., 32, 2, 162-214 (2006)
[10] Sirignano, W. A., Fluid dynamics and Transport of Droplets and Sprays (1999), Cambridge University Press: Cambridge University Press Cambridge
[11] Michaelides, E. E., Hydrodynamic force and heat/mass transfer from particles, bubbles, and drops – the Freeman scholar lecture, ASME J. Fluid Engrg., 125, 209-238 (2003)
[12] Katoshevski, D.; Dodin, Z.; Ziskind, G., Aerosol clustering in oscillating flows: mathematical analysis, Atomization and Sprays, 15, 401-412 (2005)
[13] Mashayek, F.; Pandya, R. V.R., Analytical description of particle laden flows, Progr. Energy Combust. Sci., 29, 329-378 (2003)
[14] Afanasyev, Y. D.; Korabel, V. N., Starting vortex dipoles in a viscous fluid: asymptotic theory, numerical simulation, and laboratory experiments, Phys. Fluids, 16, 11, 3850-3858 (2004) · Zbl 1187.76008
[15] Kaplanski, F.; Rudi, Y., A model for the formation of ‘optimal’ vortex rings taking into account viscosity, Phys. Fluids, 17, 087101 (2005) · Zbl 1187.76258
[16] Poole, D. R.; Barenghi, C. F.; Sergeev, Y. A.; Vinen, W. F., The motion of tracer particles in helium II, Phys. Rev. B, 71 (2005), 064514-1-16
[17] Coimbra, C. F.M.; Kobayashi, M. H., On the viscous motion of a small particle in a rotating cylinder, J. Fluid Mech., 469, 257-286 (2002) · Zbl 1043.76059
[18] Panton, R. L., Incompressible Flow (1996), John Wiley & Sons: John Wiley & Sons New York, Chichester
[19] Maxey, M. R.; Riley, J. J., Equation of motion for a small rigid sphere in a nonuniform flow, Phys. Fluids, 26, 4, 883-889 (1983) · Zbl 0538.76031
[20] Auton, T. R.; Hunt, J. C.R.; Prud’homme, M., The force exerted on a body in inviscid unsteady non-uniform rotational flow, J. Fluid Mech., 197, 241-257 (1988) · Zbl 0661.76114
[21] Mei, R., Flow due to an oscillating sphere and an expression for unsteady drag on the sphere at finite Reynolds number, J. Fluid Mech., 270, 133-174 (1994) · Zbl 0818.76012
[22] Kim, I.; Elghobashi, S.; Sirignano, W. A., On the equation for spherical-particle motion: effect of Reynolds and acceleration numbers, J. Fluid Mech., 367, 221-253 (1998) · Zbl 0926.76034
[23] Sazhin, S. S., Whistler-Mode Waves in a Hot Plasma (1993), Cambridge University Press: Cambridge University Press Cambridge
[24] Abramovitz, M.; Stegun, I. A., Handbook of Mathematical Functions (1964), National Bureau of Standards: National Bureau of Standards USA
[25] Korn, G. A.; Korn, T. M., Mathematical Handbook (1968), McGraw-Hill: McGraw-Hill New York · Zbl 0177.29301
[26] Sazhin, S. S.; Feng, G.; Heikal, M. R., A model for fuel spray penetration, Fuel, 80, 15, 2171-2180 (2001)
[27] Sazhin, S. S.; Crua, C.; Kennaird, D.; Heikal, M. R., The initial stage of fuel spray penetration, Fuel, 82, 8, 875-885 (2003)
[28] Sazhina, E. M.; Sazhin, S. S.; Heikal, M. R.; Babushok, V. I.; Johns, R., A detailed modelling of the spray ignition process in Diesel engines, Combust. Sci. Technol., 160, 317-344 (2000)
[29] Hoffman, J. D., Numerical Methods for Engineers and Scientists (2001), Marcel Dekker: Marcel Dekker New York · Zbl 1068.65001
[30] Seinfeld, J. H.; Pandis, S. N., Atmospheric Chemistry and Physics - From Air Pollution to Climate Change (1997), John Wiley & Sons
[31] Andronov, A. A.; Witt, A. A.; Khaikin, S. E., Theory of Oscillators (1966), Pergamon Press · Zbl 0188.56304
[32] Glendinning, P., Stability, Instability and Chaos (1996), Cambridge University Press: Cambridge University Press Cambridge
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.