×

Nonlinear convolution type integral equations in complex spaces. (Russian. English translation) Zbl 1474.45034

Ufim. Mat. Zh. 13, No. 1, 17-30 (2021); translation in Ufa Math. J. 13, No. 1, 17-30 (2021).
Summary: We study various classes of nonlinear convolution type integral equations appearing in the theory of feedback systems, models of population genetics and others. By the method of monotone in the Browder-Minty operators we prove global theorems on existence, uniqueness and estimates for the solutions to the considered equations in complex Lebesgue spaces \(L_p(\mathbb{R})\) under rather simple restrictions for the nonlinearities. Subject to the considered class of equations, we assume that either \(p\in (1,2]\) or \(p\in [2,\infty)\). The conditions imposed on nonlinearities are necessary and sufficient to ensure that the generated superposition operators act from the space \(L_p(\mathbb{R})\), \(1<p<\infty \), into the dual space \(L_q(\mathbb{R})\), \(q=p/(p-1)\), and are monotone. In the case of the space \(L_2(\mathbb{R})\), we combine the method of monotone operator and contracting mappings principle to show that the solutions can be found by the successive approximation method of Picard type and provide estimates for the convergence rate. Our proofs employ essentially the criterion of the Bochner positivity of a linear convolution integral operator in the complex space \(L_p(\mathbb{R})\) as \(1<p\leqslant 2\) and the coercitivity of the operator inverse to the Nemytskii operator. In the framework of the space \(L_2(\mathbb{R})\), the obtained results cover, in particular, linear convolution integral operators.

MSC:

45G10 Other nonlinear integral equations
45P05 Integral operators
47G10 Integral operators
47H05 Monotone operators and generalizations
PDFBibTeX XMLCite
Full Text: DOI MNR

References:

[1] S.N. Askhabov, Nonlinear convolution type equations, Fizmatlit, M., 2009 (in Russian)
[2] H. Brunner, Volterra integral equations: an introduction to the theory and applications, Cambr. Univ. Press, Cambridge, 2017 · Zbl 1376.45002
[3] V.E. Beneš, “A nonlinear integral equation from the theory of servo-mechanisms”, Bell. System. Techn. J., 40:5 (1961), 1309-1321 · doi:10.1002/j.1538-7305.1961.tb03252.x
[4] V.E. Beneš, “A nonlinear integral equation in the Marcinkiewicz space \(M_2\)”, J. Math. Phys, 44:1 (1965), 24-35 · Zbl 0135.33401 · doi:10.1002/sapm196544124
[5] O. Diekman., “Thresholds and travelling waves for the geographical spread of infection”, J. Math. Biol., 6:2 (1978), 109-130 · Zbl 0415.92020 · doi:10.1007/BF02450783
[6] O. Diekman, H.G. Kaper, “On the bounded solutions of nonlinear convolutions equation”, Nonlinear Anal.: Theory, Meth. and Appl., 2:6 (1978), 721-737 · Zbl 0433.92028 · doi:10.1016/0362-546X(78)90015-9
[7] F.D. Gakhov, Yu.I. Cherskii, Equations of convolution type, Nauka, M., 1978 (in Russian) · Zbl 0458.45002
[8] V.C.L. Hutson, J. S. Pym, Applications of functional analysis and operator theory, Academic Press, London, 1980 · Zbl 0426.46009
[9] M.A. Krasnosel’skii, Positive solutions of operator equations, P. Noordhoff Ltd., Groningen, 1964 · Zbl 0121.10604
[10] M.M. Vainberg, Variational method and method of monotone operators in the theory of nonlinear equations, A Halsted Press Book, New York; John Wiley & Sons, London, 1973 · Zbl 0279.47022
[11] H. Gajewski, K. Greger, K. Zacharias, Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen, Akademie-Verlag, Berlin, 1974 · Zbl 0289.47029
[12] S.N. Askhabov, “Periodic solutions of convolution type equations with monotone nonlinearity”, Ufa Math. J., 8:1 (2016), 20-34 · Zbl 1374.45003 · doi:10.13108/2016-8-1-20
[13] R.E. Edwards, Fourier series. A modern introduction, v. 1, Springer-Verlag, New York, 1979 · Zbl 0424.42001
[14] A.M. Nakhushev, Fractional calculus and its applications, Fizmatlit, M., 2003 (in Russian) · Zbl 1066.26005
[15] D. Porter, D. Stirling, Integral equations. A practical treatment, from spectral theory to applications, Cambr. Univ. Press, Cambridge, 1990 · Zbl 0714.45001
[16] S.N. Askhabov, “Positivity Conditions for Operators with Difference Kernels in Reflexive Spaces”, Journal of Math. Sciences, 250:5 (2020), 717-727 · Zbl 1514.47076 · doi:10.1007/s10958-020-05036-0
[17] A.N. Kolmogorov, S.V. Fomin, Introductory real analysis, Prentice-Hall, Inc., Englewood Cliffs, 1970 · Zbl 0213.07305
[18] Yu.A. Dubinskii, “Nonlinear elliptic and parabolic equations”, J. Soviet Math., 12:5 (1979), 475-554 · doi:10.1007/BF01089137
[19] H. Brezis, F.E. Browder, “Some new results about Hammerstein equations”, Bull. Amer. Math. Soc., 80:3 (1974), 567-572 · Zbl 0286.45007 · doi:10.1090/S0002-9904-1974-13500-7
[20] H. Brezis, F.E. Browder, “Nonlinear integral equations and systems of Hammerstein type”, Advances in Math., 18 (1975), 567-572 · Zbl 0318.45011 · doi:10.1016/0001-8708(75)90155-3
[21] S.N. Askhabov, N.K. Karapetyants, “Discrete equations of convolution type with monotone nonlinearity”, Differ. Equat., 25:10 (1989), 1255-1261 · Zbl 0698.45006
[22] S.N. Askhabov, N.K. Karapetian, “Convolution Type Discrete Equations with Monotonous Nonlinearity in Complex Spaces”, J. Integral Equat. Math. Phys., 1:1 (1992), 44-66
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.