×

Guaranteed and robust \(L^2 \)-norm a posteriori error estimates for 1D linear advection problems. (English) Zbl 1490.65270

Summary: We propose a reconstruction-based a posteriori error estimate for linear advection problems in one space dimension. In our framework, a stable variational ultra-weak formulation is adopted, and the equivalence of the \(L^2 \)-norm of the error with the dual graph norm of the residual is established. This dual norm is showed to be localizable over vertex-based patch subdomains of the computational domain under the condition of the orthogonality of the residual to the piecewise affine hat functions. We show that this condition is valid for some well-known numerical methods including continuous/discontinuous Petrov-Galerkin and discontinuous Galerkin methods. Consequently, a well-posed local problem on each patch is identified, which leads to a global conforming reconstruction of the discrete solution. We prove that this reconstruction provides a guaranteed upper bound on the \(L^2 \) error. Moreover, up to a generic constant, it also gives local lower bounds on the \(L^2 \) error, where the constant only depends on the mesh shape-regularity. This, in particular, leads to robustness of our estimates with respect to the polynomial degree. All the above properties are verified in a series of numerical experiments, additionally leading to asymptotic exactness. Motivated by these results, we finally propose a heuristic extension of our methodology to any space dimension, achieved by solving local least-squares problems on vertex-based patches. Though not anymore guaranteed, the resulting error indicator is still numerically robust with respect to both advection velocity and polynomial degree in our collection of two-dimensional test cases including discontinuous solutions aligned and not aligned with the computational mesh.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
35F05 Linear first-order PDEs
65N15 Error bounds for boundary value problems involving PDEs

Software:

FreeFem++
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] O. Axelsson, J. Karátson and B. Kovács, Robust preconditioning estimates for convection-dominated elliptic problems via a streamline Poincaré-Friedrichs inequality. SIAM J. Numer. Anal. 52 (2014) 2957-2976. · Zbl 1312.65182
[2] B. Ayuso and L.D. Marini, Discontinuous Galerkin methods for advection-diffusion-reaction problems. SIAM J. Numer. Anal. 47 (2009) 1391-1420. · Zbl 1205.65308
[3] P. Azérad and J. Pousin, Inégalité de Poincaré courbe pour le traitement variationnel de l’équation de transport. C. R. Acad. Sci. Paris Sér. I Math. 322 (1996) 721-727. · Zbl 0852.76073
[4] R. Becker, D. Capatina and R. Luce, Reconstruction-based a posteriori error estimators for the transport equation. In: Numerical Mathematics and Advanced Applications 2011. Springer, Berlin-Heidelberg (2013) 13-21. · Zbl 1267.65160
[5] K.S. Bey and J.T. Oden, hp-version discontinuous Galerkin methods for hyperbolic conservation laws. Comput. Methods Appl. Mech. Eng. 133 (1996) 259-286. · Zbl 0894.76036
[6] J. Blechta, J. Málek and M. Vohralk, Localization of the W^−1,q norm for local a posteriori efficiency. IMA J. Numer. Anal. 40 (2019) 914-950. · Zbl 07199497
[7] D. Braess, V. Pillwein and J. Schöberl, Equilibrated residual error estimates are p-robust. Comput. Methods Appl. Mech. Eng. 198 (2009) 1189-1197. · Zbl 1157.65483
[8] P. Cantin, Well-posedness of the scalar and the vector advection-reaction problems in Banach graph spaces. C. R. Math. Acad. Sci. Paris 355 (2017) 892-902. · Zbl 1379.35046
[9] P. Cantin and A. Ern, An edge-based scheme on polyhedral meshes for vector advection-reaction equations. ESAIM: M2AN 51 (2017) 1561-1581. · Zbl 1402.65151
[10] C. Carstensen and S.A. Funken, Fully reliable localized error control in the FEM. SIAM J. Sci. Comput. 21 (1999) 1465-1484. · Zbl 0956.65099
[11] W. Dahmen and R.P. Stevenson, Adaptive strategies for transport equations. Comput. Methods Appl. Math. 19 (2019) 431-464. · Zbl 1420.65109
[12] W. Dahmen, C. Huang, C. Schwab and G. Welper, Adaptive Petrov-Galerkin methods for first order transport equations. SIAM J. Numer. Anal. 50 (2012) 2420-2445. · Zbl 1260.65091
[13] A. Devinatz, R. Ellis and A. Friedman, The asymptotic behavior of the first real eigenvalue of second order elliptic operators with a small parameter in the highest derivatives. II. Indiana Univ. Math. J. 23 (1973-1974) 991-1011. · Zbl 0263.35026
[14] A. Ern and J.-L. Guermond, Discontinuous Galerkin methods for Friedrichs’ systems. I. General theory. SIAM J. Numer. Anal. 44 (2006) 753-778. · Zbl 1122.65111
[15] A. Ern and M. Vohralík, Polynomial-degree-robust a posteriori estimates in a unified setting for conforming, nonconforming, discontinuous Galerkin, and mixed discretizations. SIAM J. Numer. Anal. 53 (2015) 1058-1081. · Zbl 1312.76026
[16] A. Ern and M. Vohralk, Stable broken H^1 and H(div) polynomial extensions for polynomial-degree-robust potential and flux reconstruction in three space dimensions. Math. Comput. 89 (2020) 551-594. · Zbl 1434.65253
[17] A. Ern, A.F. Stephansen and M. Vohralík, Guaranteed and robust discontinuous Galerkin a posteriori error estimates for convection-diffusion-reaction problems. J. Comput. Appl. Math. 234 (2010) 114-130. · Zbl 1190.65165
[18] K.O. Friedrichs, Symmetric positive linear differential equations. Comm. Pure Appl. Math. 11 (1958) 333-418. · Zbl 0083.31802
[19] E.H. Georgoulis, E. Hall and C. Makridakis, Error control for discontinuous Galerkin methods for first order hyperbolic problems. In: Vol. 157 of Recent Developments in Discontinuous Galerkin Finite Element Methods for Partial Differential Equations. IMA Vol. Math. Appl. Springer, Cham (2014) 195-207. · Zbl 1282.65110
[20] E.H. Georgoulis, E. Hall and C. Makridakis, An a posteriori error bound for discontinuous Galerkin approximations of convection-diffusion problems. IMA J. Numer. Anal. 39 (2019) 34-60. · Zbl 1468.65088
[21] J.-L. Guermond, A finite element technique for solving first-order PDEs in l^p. SIAM J. Numer. Anal. 42 (2004) 714-737. · Zbl 1080.65110
[22] F. Hecht, New development in FreeFEM++. J. Numer. Math. 20 (2012) 251-265. · Zbl 1266.68090
[23] P. Houston, J.A. Mackenzie, E. Süli and G. Warnecke, A posteriori error analysis for numerical approximations of Friedrichs systems. Numer. Math. 82 (1999) 433-470. · Zbl 0935.65096
[24] P.D. Lax and R.S. Phillips, Local boundary conditions for dissipative symmetric linear differential operators. Comm. Pure Appl. Math. 13 (1960) 427-455. · Zbl 0094.07502
[25] C. Makridakis and R.H. Nochetto, A posteriori error analysis for higher order dissipative methods for evolution problems. Numer. Math. 104 (2006) 489-514. · Zbl 1104.65091
[26] I. Muga, M.J. Tyler and K. van der Zee, The discrete-dual minimal-residual method (DDMRes) for weak advection-reaction problems in Banach spaces. Preprint arXiv:1808.04542 (2018). · Zbl 1459.65223
[27] G. Sangalli, Analysis of the advection-diffusion operator using fractional order norms. Numer. Math. 97 (2004) 779-796. · Zbl 1063.65127
[28] G. Sangalli, A uniform analysis of nonsymmetric and coercive linear operators. SIAM J. Math. Anal. 36 (2005) 2033-2048. · Zbl 1114.35060
[29] G. Sangalli, Robust a posteriori estimator for advection-diffusion-reaction problems. Math. Comput. 77 (2008) 41-70. · Zbl 1130.65083
[30] D. Schötzau and L. Zhu, A robust a posteriori error estimator for discontinuous Galerkin methods for convection-diffusion equations. Appl. Numer. Math. 59 (2009) 2236-2255. · Zbl 1169.65108
[31] E. Süli, A posteriori error analysis and adaptivity for finite element approximations of hyperbolic problems. In: An Introduction to Recent Developments in Theory and Numerics for Conservation Laws (Freiburg/Littenweiler, 1997) Vol. 5 of Lect. Notes Comput. Sci. Eng. Springer, Berlin-Heidelberg (1999) 123-194. · Zbl 0927.65117
[32] Z. Tang, https://who.rocq.inria.fr/Zuqi.Tang/freefem++.html (2015).
[33] D.S. Tartakoff, Regularity of solutions to boundary value problems for first order systems. Indiana Univ. Math. J. 21 (1972) 1113-1129. · Zbl 0235.35019
[34] R. Verfürth, Robust a posteriori error estimates for stationary convection-diffusion equations. SIAM J. Numer. Anal. 43 (2005) 1766-1782. · Zbl 1099.65100
[35] M. Vohralk and M. Zakerzadeh, Guaranteed and robust L^2-norm a posteriori error estimates for 1D linear advection-reaction problems. In preparation (2020).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.