×

Poisson distribution for a sum of additive functions. (English) Zbl 1194.11084

The authors consider the Poisson law as the limit distribution of additive functions with shifted arguments. Let \(f_x\), \(g_x\) be two sets of additive functions with values \(f_x(p),\;g_x(p) \in \{0,1\}\) (at the primes).
The main result ist: If the distributions \[ \nu_x\{n\leq x,\; f_x(n) + g_x(n+1) < u\} \] converge weakly (as \(x\to\infty\)) to some distribution function, then \[ \phi(x,\ell) =\frac1x \sum_{n\leq x}\prod_{r=0}^{\ell-1} (f_x(n) - g_x(n+1) - r), \] (\(\ell = 1,2,\dots\)) has a finite limit \[ \lim_{x\to\infty}\phi(x,\ell) = \phi_\ell,\tag{\(\ast\)} \] where \(\phi_\ell\) is the factorial moment of the limit law.
And: if \((\ast)\) holds for every fixed \(\ell\), and if \(\sum_{\ell=1}^\infty \frac{2^\ell\phi_\ell}{\ell\,!}\) converges, then the distribution functions \(\nu_x\{\dots\}\) converge weakly to some distribution with characteristic function \[ 1 + \sum_{\ell=1}^\infty \frac1{\ell\,!} \phi_\ell (e^{it} - 1)^\ell. \] The distributions converge weakly to the Poisson law with parameter \(\lambda\), if and only if  \(\lim_{x\to\infty}\phi(x,\ell) = \lambda^\ell\)  for every \(\ell\).
If the functions \(f_x,\; g_x\) are strongly additive, and if in addition \[ \lim_{x\to\infty} \frac1{\log x} \left( \sum_{{p\,\leq x}\atop {f_x(p)=1}} \frac{\log p}p + \sum_{{p\,\leq x}\atop {g_x(p)=1}} \frac{\log p}p \right)=0, \] then the distributions \(\nu_x(\dots)\) converge weakly to the Poisson law (with parameter \(\lambda\)) if and only if \[ \lim_{x\to\infty}\left( \max_{{p\,\leq x}\atop {f_x(p)=1}} \frac1p + \max_{{p\,\leq x}\atop {g_x(p)=1}} \frac1p \right)=0, \text{ and } \lim_{x\to\infty}\left( \sum_{{p\,\leq x}\atop {f_x(p)=1}} \frac1p + \sum_{{p\,\leq x}\atop {g_x(p)=1}} \frac1p \right)=\lambda. \]

MSC:

11K65 Arithmetic functions in probabilistic number theory
11N37 Asymptotic results on arithmetic functions
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Elliott, P. D.T. A., Probabilistic Number Theory, vol. 1 (1979), Berlin: Springer, Berlin · Zbl 0431.10029
[2] Elliott, P. D.T. A., Probabilistic Number Theory, vol. 2 (1980), Berlin: Springer, Berlin · Zbl 0431.10030
[3] Elliott, P. D.T. A., Arithmetic Functions and Integer Products (1985), New York: Springer, New York · Zbl 0559.10032
[4] Elliott, P. D.T. A., On the correlation of multiplicative and the sum of additive arithmetic functions, Memoirs Am. Math. Soc., 112, 2, 538 (1994) · Zbl 0824.11056
[5] Halász, G., On the distribution of additive arithmetical functions, Acta Arith., 27, 143-152 (1975) · Zbl 0256.10028
[6] Hildebrand, A., An Erdős-Wintner theorem for differences of additive functions, Trans. Am. Math. Soc., 310, 1, 257-276 (1988) · Zbl 0707.11057 · doi:10.2307/2001120
[7] Kátai, I., On the distribution of arithmetical functions, Acta Math. Acad. Sci. Hung., 20, 1-2, 69-87 (1969) · Zbl 0175.04103 · doi:10.1007/BF01894568
[8] Kubilius, J., Probabilistic Methods in the Theory of Numbers (1964), Providence: AMS, Providence · Zbl 0133.30203
[9] LeVeque, W. J., On the size of certain number-theoretic functions, Trans. Am. Math. Soc., 66, 440-463 (1949) · Zbl 0036.30501 · doi:10.2307/1990590
[10] Ruzsa, I. Z., Generalized moments of additive functions, J. Number Theory, 18, 27-33 (1984) · Zbl 0524.10042 · doi:10.1016/0022-314X(84)90039-8
[11] Šiaulys, J., The convergence of distribution of integer valued additive functions to the Poisson law, Lith. Math. J., 35, 300-308 (1995) · Zbl 0865.11056
[12] Šiaulys, J., The convergence to the Poisson law. II. Unbounded strongly additive functions, Lith. Math. J., 36, 314-322 (1996) · Zbl 0886.11050 · doi:10.1007/BF02986856
[13] Šiaulys, J., The convergence to the Poisson law. III. Method of moments, Lith. Math. J., 38, 374-390 (1998) · Zbl 1085.11502 · doi:10.1007/BF02465821
[14] Stepanauskas, G., The mean values of multiplicative functions on shifted primes, Lith. Math. J., 37, 443-451 (1997) · Zbl 0932.11059 · doi:10.1007/BF02465584
[15] Stepanauskas, G.; Laurinčikas, A.; Manstavičius, E.; Stakėnas, V., The mean values of multiplicative functions. III, Analytic and Probabilistic Methods in Number Theory, 371-387 (1997), Utrecht-Vilnius: VSP-TEV, Utrecht-Vilnius · Zbl 0977.11043
[16] Stepanauskas, G., The mean values of multiplicative functions. IV, Publ. Math. Debrecen, 52, 659-681 (1998) · Zbl 0912.11036
[17] Stepanauskas, G., The mean values of multiplicative functions. I, Ann. Univ. Sci. Budapest (Sect. Comp.), 18, 175-186 (1999) · Zbl 0977.11041
[18] Timofeev, N. M.; Usmanov, H. H., The distribution of values of a sum of additive functions with shifted arguments, Matemat. Zamet., 352, 5, 113-124 (1992)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.