×

Goodness-of-fit tests based on empirical characteristic functions. (English) Zbl 1453.62119

Summary: A class of goodness-of-fit tests based on the empirical characteristic function is studied. They can be applied to continuous as well as to discrete or mixed data with any arbitrary fixed dimension. The tests are consistent against any fixed alternative for suitable choices of the weight function involved in the definition of the test statistic. The bootstrap can be employed to estimate consistently the null distribution of the test statistic. The goodness of the bootstrap approximation and the power of some tests in this class for finite sample sizes are investigated by simulation.

MSC:

62-08 Computational methods for problems pertaining to statistics
62G10 Nonparametric hypothesis testing
62E20 Asymptotic distribution theory in statistics

Software:

sn
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abramowitz, M.; Stegun, I. A., Handbook of mathematical functions with formulas, graphs, and mathematical tables, (National Bureau of Standards Applied Mathematics Series, vol. 55 (1972)) · Zbl 0515.33001
[2] Alba-Fernández, V.; Ibáñez-Pérez, M. J.; Jiménez-Gamero, M. D., A bootstrap algorithm for the two-sample problem using trigonometric Hermite Spline interpolation, Commun. Nonlinear Sci. Numer. Simul., 9, 275-286 (2004) · Zbl 1032.62039
[3] Alba, V.; Barrera, D.; Jiménez, M. D., A homogeneity test based on empirical characteristic functions, Comput. Statist., 16, 2, 255-270 (2001) · Zbl 1007.62041
[4] Alba-Fernández, V.; Jiménez-Gamero, M. D.; Muñoz-García, J., A test for the two-sample problem based on empirical characteristic functions, Comput. Stat. Data Anal., 52, 3730-3748 (2008) · Zbl 1452.62305
[5] Azzalini, A., The skew-normal distribution and related multivariate families, Scand. J. Statist., 32, 159-188 (2005) · Zbl 1091.62046
[6] Azzalini, A.; Capitanio, A., Statistical applications of the multivariate skew normal distribution, J. Roy. Statist. Soc. B, 61, 579-602 (1999) · Zbl 0924.62050
[7] Azzalini, A.; Dalla Valle, A., The multivariate skew-normal distribution, Biometrika, 83, 715-726 (1996) · Zbl 0885.62062
[8] Babu, G. J.; Rao, C. R., Goodness-of-fit tests when parameters are estimated, Sankhyā, 66, 63-74 (2004) · Zbl 1192.62126
[9] Baringhaus, L.; Danschke, R.; Henze, N., Recent and classical tests for normality — a comparative study, Comm. Statist-Simulation, 18, 363-379 (1989) · Zbl 0695.62120
[10] Baringhaus, L.; Henze, N., A consistent test for multivariate normality based on the empirical characteristic function, Metrika, 35, 339-348 (1988) · Zbl 0654.62046
[11] Besbeas, P.; Morgan, B. J.T., Integrated Squared error estimation of normal mixtures, Comput. Stat. Data Anal., 44, 517-526 (2004) · Zbl 1429.62079
[12] Cook, R. D.; Weisberg, S., An Introduction to Regression Graphics (1994), Wiley · Zbl 0925.62287
[13] Csörgő, S., Limit behaviour of the empirical characteristic function, Ann. Statist., 9, 130-144 (1981) · Zbl 0453.60025
[14] Csörgő, S., Multivariate empirical characteristics functions, Z. Wahrscheinlichkeitstheorie Verwandte Geb., 55, 203-229 (1981) · Zbl 0438.60025
[15] Csörgő, S., The empirical characteristic process when parameters are estimated, (Gani, J.; Rohatgi, V. K., Contributions to Probability (1981), Academic Press), 708-723
[16] Epps, T. W., Limiting behavior of the ICF test for normality under Gram-Charlier alternatives, Statist. Probab. Lett., 42, 175-184 (1999) · Zbl 1057.62512
[17] Epps, T. W., Tests for location-scale families based on the empirical characteristic function, Metrika, 62, 99-114 (2005) · Zbl 1080.62010
[18] Epps, T. W.; Pulley, L. B., A test for normality based on the empirical characteristic function, Biometrika, 70, 723-726 (1983) · Zbl 0523.62045
[19] Epps, T. W.; Singleton, K. J., An omnibus test for the two-sample problem using the empirical characteristic function, J. Stat. Comput. Simul., 26, 177-203 (1986) · Zbl 0609.62064
[20] Fan, Y., Goodness-of-fit tests for a multivariate distribution by the empirical characteristic function, J. Multivariate Anal., 62, 36-63 (1997) · Zbl 0949.62044
[21] Fan, Y., Goodness-of-fit tests based on kernel density estimators with fixed smoothing parameters, Econom. Theory, 14, 604-621 (1998)
[22] Fang, K. T.; Kotz, S.; Ng, K. W., Symmetric Multivariate and Related Distributions (1990), Chapman and Hall
[23] Feller, W., An Introduction to Probability Theory and its Applications, Vol. 2 (1971), Wiley · Zbl 0219.60003
[24] Feuerverger, A.; Mureika, R. A., The empirical characteristic function and its applications, Ann. Statist., 5, 88-97 (1977) · Zbl 0364.62051
[25] González-Farías, G.; Domínguez-Molina, A.; Gupta, A. K., Additive properties of skew normal random vectors, J. Statist. Plann. Inference, 126, 521-534 (2004) · Zbl 1076.62052
[26] Gregory, G. G., Large sample theory for \(U\)-statistics and test of fit, Ann. Statist., 5, 110-123 (1977) · Zbl 0371.62033
[27] Henze, N.; Klar, B.; Meintanis, S. G., Invariant tests for symmetry about an unspecified point based on the empirical characteristic function, J. Multivariate Anal., 87, 275-297 (2003) · Zbl 1040.62047
[28] Henze, N.; Wagner, T., A New Approach to the BHEP Tests for Multivariate Normality, J. Multivariate Anal., 62, 1-23 (1997) · Zbl 0874.62043
[29] Klar, B.; Meintanis, S. G., Tests for normal mixtures based on the empirical characteristic function, Comput. Stat. Data Anal., 49, 227-242 (2005) · Zbl 1429.62156
[30] Koutrouvelis, I. A., A goodness-of-fit test of simple hypothesis based on the empirical characteristic function, Biometrika, 67, 238-240 (1980) · Zbl 0425.62024
[31] Koutrouvelis, I. A.; Kellermeier, J., A goodness-of-fit test based on the empirical characteristic function when parameters must be estimated, J. Roy. Statist. Soc. B, 43, 173-176 (1981) · Zbl 0473.62037
[32] Jiménez-Gamero, M. D.; Muñoz-García, J.; Pino-Mejías, R., Bootstrapping parameter estimated degenerate \(U\) and \(V\) statistics, Statist. Probab. Lett., 61, 61-70 (2003) · Zbl 1014.62039
[33] Jiménez-Gamero, M. D.; Muñoz-García, J.; Pino-Mejías, R., Testing goodness of fit for the distribution of errors in multivariate linear models, J. Multivariate Anal., 95, 301-322 (2005) · Zbl 1070.62029
[34] Meintanis, S. G.; Iliopoulos, G., Fourier methods for testing multivariate independence, Comput. Stat. Data Anal., 52, 1884-1895 (2008) · Zbl 1452.62389
[35] Romano, J. P., A bootstrap revival of some nonparametric distance tests, J. Amer. Statist. Soc., 83, 698-708 (1988) · Zbl 0658.62059
[36] Serfling, R. J., Approximation Theorems of Mathematical Statistics (1980), Wiley · Zbl 0538.62002
[37] Stute, W.; González-Manteiga, W.; Presedo-Quindimil, M., Bootstrap based goodness-of-fit-tests, Metrika, 40, 243-256 (1993) · Zbl 0770.62016
[38] White, H., Maximum likelihood estimation of misspecified models, Econometrica, 50, 1-25 (1982) · Zbl 0478.62088
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.