×

Numerical modelling of interfacial soil erosion with viscous incompressible flows. (English) Zbl 1225.74055

Summary: The aim of this study is to develop a numerical model for simulating surface erosion occurring at a fluid/soil interface subject to a flow process. Balance equations with jump relations are used. A penalization procedure including a fictitious domain method is used to compute the Stokes flow around obstacles, in order to avoid body-fitted unstructured meshes and instead use fast and efficient finite volume approximations on Cartesian meshes. The evolution of the water/soil interface is described by using a level set function. The ability of the model to predict the interfacial erosion of soils is confirmed by several numerical simulations.

MSC:

74L10 Soil and rock mechanics
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
74S10 Finite volume methods applied to problems in solid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Angot, P.; Bruneau, C.-H.; Fabrie, P., A penalization method to take into account obstacles in incompressible viscous flows, Numer. Math., 81, 497-520 (1999) · Zbl 0921.76168
[2] Angot, P., Analysis of singular perturbations on the Brinkman problem for fictitious domain models of viscous flows, Math. Meth. Appl. Sci., 22, 1395-1412 (1999) · Zbl 0937.35129
[3] Bonelli, S.; Brivois, O., The scaling law in the hole erosion test with a constant pressure drop, Int. J. Numer. Anal. Meth., 32, 1573-1595 (2008) · Zbl 1273.74208
[4] Bost, C.; Cottet, G.-H.; Maitre, E., Convergence analysis of a penalization method for the three-dimensional motion of a rigid body in an incompressible viscous fluid, SIAM J. Num. Anal., 48, 4, 1313-1337 (2010) · Zbl 1213.35335
[5] Brivois, O.; Bonelli, S.; Borghi, R., Soil erosion in the boundary layer flow along a slope: a theoretical study, Eur. J. Mech. B-Fluid., 26, 707-719 (2007) · Zbl 1152.76418
[6] Chang, Y. C.; Hou, T. Y.; Merriman, B.; Osher, S., A Level Set formulation of Eulerian interface capturing methods for incompressible fluid flows, J. Comput. Phys., 124, 449-464 (1996) · Zbl 0847.76048
[7] Chantalat, F.; Bruneau, C. H.; Galusinski, C.; Iollo, A., Level-set, penalization and cartesian meshes: a paradigm for inverse problems and optimal design, J. Comput. Phys., 228, 6291-6315 (2009) · Zbl 1175.65108
[8] Chauchat, J.; Médale, M., A three-dimensional numerical model for incompressible two-phase flow of a granular bed submitted to a laminar shearing flow, Comput. Methods Appl. Mech. Engrg., 199, 9-12, 439-449 (2010) · Zbl 1227.76028
[9] Chorin, A. J., A numerical method for solving incompressible viscous flow problems, J. Comput. Phys., 2, 1, 12-26 (1967) · Zbl 0149.44802
[10] Christakis, N.; Allsop, N. W.H.; Beale, R. G.; Cooper, A. J.; Dennis, J. M., A volume of fluid numerical model for wave impacts at coastal structures, Proc. Inst. Civil Eng. Water Maritime Engrg., 3, 159-168 (2002)
[11] Diaz-Goano, C.; Minev, P. D.; Nandakumar, K., A fictitious domain/finite element method for particulate flows, J. Comput. Phys., 192, 105-123 (2003) · Zbl 1047.76042
[12] Fedkiw, R., Coupling an Eulerian fluid calculation to a lagrangian solid calculation with the ghost fluid method, J. Comput. Phys., 175, 200-224 (2002) · Zbl 1039.76050
[13] Fortin, M.; Glowinski, R., Augmented Lagrangian Methods: Applications to the Numerical Solution of Boundary-Value Problems. Augmented Lagrangian Methods: Applications to the Numerical Solution of Boundary-Value Problems, Studies in Mathematics and its Applications, vol. 15 (1983), North-Holland: North-Holland Amsterdam · Zbl 0525.65045
[14] Galusinski, C.; Vigneaux, P., On stability condition for bifluid flows with surface tension: application to microfluidics, J. Comput. Phys., 227, 6140-6164 (2008) · Zbl 1388.76051
[15] Golay, F.; Lachouette, D.; Bonelli, S.; Seppecher, P., Interfacial erosion: a three-dimensional numerical model, C. R. Mecanique, 338, 6, 333-337 (2010) · Zbl 1406.74488
[16] F. Golay, S. Bonelli, Numerical modeling of suffusion as an interfacial erosion process, Eur. J. Environ. Civil Engrg., submitted for publication.; F. Golay, S. Bonelli, Numerical modeling of suffusion as an interfacial erosion process, Eur. J. Environ. Civil Engrg., submitted for publication.
[17] Harlow, F. H.; Welsh, J. E., Numerical calculation of time dependent viscous incompressible flow with free surface, Phys. Fluids, 8, 12, 2182-2189 (1965) · Zbl 1180.76043
[18] Jiang, G. S.; Peng, D., Weighted ENO schemes for Hamilton-Jacobi equations, J. Sci. Comput., 21, 6, 2126-2143 (2000) · Zbl 0957.35014
[19] Khadra, K.; Angot, P.; Parneix, S.; Caltagirone, J. P., Fictitious domain approach for numerical modelling of Navier-Stokes equations, Int. J. Numer. Meth. Fluids, 34, 651-684 (2000) · Zbl 1032.76041
[20] Lachouette, D.; Golay, F.; Bonelli, S., One-dimensional modeling of piping flow erosion, C. R. Mecanique, 336, 731-736 (2008) · Zbl 1145.76342
[21] Olson, E.; Kreiss, G., A conservative level set method for two phase flow, J. Comput. Phys., 210, 225-246 (2005) · Zbl 1154.76368
[22] Osher, S.; Sethian, J. A., Fronts propagating with curvature-dependent speed: algorithms for tracking material interface, J. Comput. Phys., 39, 201-225 (1981)
[23] Papamichos, E.; Vardoulakis, I.; Tronvoll, J.; Skjaerstein, A., Volumetric sand production model and experiment, Int. J. Numer. Anal. Meth., 25, 789-808 (2001) · Zbl 0986.74515
[24] Patil, P. P.; Tiwari, S., Computation of flow past complex geometries using MAC algorithm on body-fitted coordinates, Engrg. Appl. Comput. Fluids Mech., 3, 1, 15-27 (2009)
[25] Prodanovic, M.; Bryant, S., A level set method for determining critical curvatures for drainage and imbibition, J. Colloid Interf. Sci., 304, 442-458 (2006)
[26] Ramiere, I.; Angot, P.; Belliard, M., A fictitious domain approach with spread interface for elliptic problems with general boundary conditions, Comput. Methods Appl. Mech. Engrg., 196, 4-6, 766-781 (2007) · Zbl 1121.65364
[27] Sleijpen, G.; Fokkema, D., Bicgstab(L) for linear equations involving unsymmetric matrices with complex spectrum, Electron. T. Numer. Anal., 1, 11-32 (1993) · Zbl 0820.65016
[28] Sussman, M.; Smereka, P.; Osher, S., A level set approach for computing solutions to incompressible two-phase flows, J. Comput. Phys., 114, 146-159 (1994) · Zbl 0808.76077
[29] Temam, R., Une méthode d’approximation de la solution des équations de Navier-Stokes, B. Soc. Math. Fr., 96, 115-152 (1968) · Zbl 0181.18903
[30] Van der Vorst, H., Bi-CGSTAB: a fast and smoothly converging variant of Bi-cg for the solution of nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 13, 2, 631-664 (1992) · Zbl 0761.65023
[31] Vardoulakis, I.; Stavropoulou, M.; Papanstasiou, P., Hydromechanical aspects of sand production problem, Transp. Porous Media, 22, 225-244 (1996)
[32] Vardoulakis, I.; Papanastasiou, P.; Stavropoulou, M., Sand erosion in axial flow conditions, Transp. Porous Media, 45, 267-281 (2001)
[33] P. Vigneaux, Méthodes Level Set pour des problèmes d’interface en microfluidique, Ph.D. Thesis, University of Bordeaux I, 2007.; P. Vigneaux, Méthodes Level Set pour des problèmes d’interface en microfluidique, Ph.D. Thesis, University of Bordeaux I, 2007.
[34] S. Vincent, Modélisation d’Écoulements incompressibles de fluides non-miscibles, Ph.D. Thesis, University of Bordeaux, France, 1999.; S. Vincent, Modélisation d’Écoulements incompressibles de fluides non-miscibles, Ph.D. Thesis, University of Bordeaux, France, 1999.
[35] Vincent, S.; Caltagirone, J. P., A One-cell local multigrid method for solving unsteady incompressible multiphase flows, J. Comput. Phys., 163, 172-215 (2000) · Zbl 0991.76058
[36] Vincent, S.; Caltagirone, J. P.; Lubin, P.; Randrianarivelo, T. N., An adaptative augmented Lagrangian method for three-dimensional multimaterial flows, Comput. Fluids, 33, 10, 1273-1289 (2004) · Zbl 1079.76047
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.