×

An existence result for a quadrature surface free boundary problem. (English) Zbl 1207.35106

Summary: The aim of this paper is to present two different approaches in order to obtain an existence result to the so-called quadrature surface free boundary problem. The first one requires the shape derivative calculus while the second one depends strongly on the compatibility condition of the Neumann problem. A necessary and sufficient condition of existences is given in the radial case.

MSC:

35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
35A35 Theoretical approximation in context of PDEs
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] H.W. Alt and L.A. Caffarelli: “Existence and regularity for a minimum problem with free boundary”, J. Reine angew. Math., Vol. 325, (1981), pp. 105-144. · Zbl 0449.35105
[2] M. Barkatou, D. Seck and I. Ly: “An existence result for a free boundary problem for the p-Laplace operator”, submitted. · Zbl 1207.35106
[3] M. Barkatou: “Some geometric properties for a class of non Lipschitz-domains”, New York J. of Math., Vol. 8, (2002), pp. 189-213. · Zbl 1066.35028
[4] M. Barkatou: “Existence of quadrature surfaces for a uniform density supported by a segment”, submitted. · Zbl 1160.35380
[5] J.A. Bello, E. Fernandez-Cara, J. Lemoine and J. Simon: “On drag differentiability for Lipschitz domains”, Control of Part. Diff. Eq. and Appl., Lec. Notes In Pure and Applied Math. Series, Vol. 174, (1995), Dekker, New York. · Zbl 0860.35093
[6] A. Beurling: “On free-boundary problems for the Laplace equation”, Sem. Anal. Funct., Inst. Adv. Study Princeton, Vol. 1, (1957), pp. 248-263.
[7] D. Bucur and P. Trebeschi: “Shape Optimization Problems Governed by Nonlinear State Equations”, Proc. Roy. Sc. Edinburgh, Vol. 128 A (1998), pp. 945-963. · Zbl 0918.49030
[8] D. Bucur and J.P. Zolesio: “N-dimensional shape optimization under capacitary constraints”, J. Diff. Eq., Vol. 123(2), (1995), pp. 504-522. http://dx.doi.org/10.1006/jdeq.1995.1171 · Zbl 0847.49029
[9] G. Buttazzo, V. Ferone and B. Kawhol: “Minimum problems over sets of concave functions and related questions”, Math. Nachr., (1995), pp. 71-89. · Zbl 0835.49001
[10] T. Carleman: “Über ein Minimumproblem der mathematischen Physik”,Math. Z.,Vol. 1, (1918),pp.208-212. http://dx.doi.org/10.1007/BF01203612 · JFM 46.0765.02
[11] D. Chenais, “On the existence of a solution in a domain identification problem”, J. Math. Anal. Appl., Vol. 52, (1975), pp. 189-289. http://dx.doi.org/10.1016/0022-247X(75)90091-8
[12] R. Dautray and J.L. Lions: Analyse mathématique et calcul numérique pour les sciences et les techniques, Vol. 1, 2, Masson, Paris, 1984
[13] E. DiBendetto: “ C 1+∞ local regularity of weak solutions of degenerate elliptic equations”, Nonlinear Analysis., Vol. 7, (1983), pp. 827-850. http://dx.doi.org/10.1016/0362-546X(83)90061-5
[14] K. Friedrichs: “Über ein Minimumproblem für Potentialströmungen mit freiem Rand”.Math. Ann.,Vol. 109, (1934),pp.208-212.
[15] G. Gidas, Wei-Ming Ni and L. Nirenberg: “Symmetry and related properties via the maximum principle”,Comm. Math. Phys., Vol. 68, (1979),pp.209-300. http://dx.doi.org/10.1007/BF01221125 · Zbl 0425.35020
[16] B. Gustafsson and H. Shahgholian: “Existence and geometric properties of solutions of a free boundary problem in potential theory”, J. Reine angew. Math., Vol. 473, (1996), pp. 137-179. · Zbl 0846.31005
[17] A. Henrot: “Subsolutions and supersolutions in a free boundary problem”, Arkiv för Math., Vol. 32(1), (1994), pp. 79-98. · Zbl 0809.35172
[18] H. Hosseinzadeh and H. Shahgholian: “Some qualitative aspects of a free boundary problem for the p-Laplacian”, Ann. Acad. Scient. Fenn. Math., Vol. 24, (1999), pp. 109-121. · Zbl 0914.35149
[19] D. Gilbarg and N.S. Trudinger: Elliptic partial equations of second order, Springer-Verlag, 1983. · Zbl 0562.35001
[20] M.V. Keldyš: “On the solvability and the stability of the Dirichlet problem”, Amer. Math. Soc. Trans., Vol. 51 (2), (1966), pp. 1-73.
[21] J.L. Lewis: “Regularity of the derivatives of solutions to certain degenerate elliptic equations”, Indiana Univ. Math. J., Vol. 32, (1983), pp. 849-858. http://dx.doi.org/10.1512/iumj.1983.32.32058 · Zbl 0554.35048
[22] G.M. Lieberman: “Boundary regularity for solutions of degenerate elliptic equations”, Nonlinear Analysis., Vol. 12, (1988), pp. 1203-1219. http://dx.doi.org/10.1016/0362-546X(88)90053-3
[23] V. Mikhailov: Équation aux dérivées partielles, Mir, Moscow, 1980.
[24] F. Murat and J. Simon: “Quelques résultats sur le contrôle par un domaine géométrique”, Publ. du labo. d’Anal. Num., Paris VI, (1974), pp. 1-46.
[25] O. Pironneau: Optimal shape design for elliptic systems, Springer series in Computational Physics, Springer, New York, 1984.
[26] J. Serrin: “A symmetry problem in potential theory”,Arch. Rat. Mech. Anal.,Vol. 43, (1971),pp.304-318. http://dx.doi.org/10.1007/BF00250468 · Zbl 0222.31007
[27] H. Shahgholian: “Quadrature surfaces as free boundaries”, Arkiv för Math., Vol. 32(2), (1994), pp. 475-492. · Zbl 0827.31004
[28] J. Sokolowski and J.P. Zolesio: Introduction to shape optimization: shape sensitity analysis, Springer Series in Computational Mathematics, Vol. 10, Springer, Berlin, 1992.
[29] P. Tolksdorf: “On the Dirichlet problem for quasilinear equations in domains with conical boundary points”, Comm. Partial Differential Equations, Vol. 8(7), (1983), pp. 773-817. · Zbl 0515.35024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.