×

Flow-induced degradation of drag-reducing polymer solutions within a high-Reynolds-number turbulent boundary layer. (English) Zbl 1225.76012

Summary: Polymer drag reduction, diffusion and degradation in a high-Reynolds-number turbulent boundary layer (TBL) flow were investigated. The TBL developed on a flat plate at free-stream speeds up to \(20ms^{-1}\). Measurements were acquired up to 10.7m downstream of the leading edge, yielding downstream-distance-based Reynolds numbers up to 220 million. The test model surface was hydraulically smooth or fully rough. Flow diagnostics included local skin friction, near-wall polymer concentration, boundary layer sampling and rheological analysis of polymer solution samples. Skin-friction data revealed that the presence of surface roughness can produce a local increase in drag reduction near the injection location (compared with the flow over a smooth surface) because of enhanced mixing. However, the roughness ultimately led to a significant decrease in drag reduction with increasing speed and downstream distance. At the highest speed tested \((20ms^{-1})\) no drag reduction was discernible at the first measurement location (0.56 m downstream of injection), even at the highest polymer injection flux (10 times the flux of fluid in the near-wall region). Increased polymer degradation rates and polymer mixing were shown to be the contributing factors to the loss of drag reduction. Rheological analysis of liquid drawn from the TBL revealed that flow-induced polymer degradation by chain scission was often substantial. The inferred polymer molecular weight was successfully scaled with the local wall shear rate and residence time in the TBL. This scaling revealed an exponential decay that asymptotes to a finite (steady-state) molecular weight. The importance of the residence time to the scaling indicates that while individual polymer chains are stretched and ruptured on a relatively short time scale \((\sim 10^{-3}s)\), because of the low percentage of individual chains stretched at any instant in time, a relatively long time period \((\sim 0.1s)\) is required to observe changes in the mean molecular weight. This scaling also indicates that most previous TBL studies would have observed minimal influence from degradation due to insufficient residence times.

MSC:

76-05 Experimental work for problems pertaining to fluid mechanics
76F70 Control of turbulent flows
76F40 Turbulent boundary layers
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] DOI: 10.1002/app.1959.070010110 · doi:10.1002/app.1959.070010110
[2] DOI: 10.1080/00221688209499488 · doi:10.1080/00221688209499488
[3] DOI: 10.1016/0009-2509(93)E0029-C · doi:10.1016/0009-2509(93)E0029-C
[4] Merrill, Polym. Commun. 25 pp 144– (1984)
[5] DOI: 10.1002/app.1974.070180521 · doi:10.1002/app.1974.070180521
[6] DOI: 10.1017/S0022112006002138 · Zbl 1177.76169 · doi:10.1017/S0022112006002138
[7] Larson, The Structure and Rheology of Complex Fluids (1999)
[8] Larson, Rheol. Acta 31 pp 2123– (1992)
[9] DOI: 10.1063/1.858187 · doi:10.1063/1.858187
[10] Wu, Trans. ASME: J. Basic Engng 94 pp 749– (1972) · doi:10.1115/1.3425541
[11] DOI: 10.1017/S0022112007006611 · Zbl 1175.76069 · doi:10.1017/S0022112007006611
[12] DOI: 10.1017/S0022112008004874 · Zbl 1171.76321 · doi:10.1017/S0022112008004874
[13] DOI: 10.1103/PhysRevLett.100.134504 · doi:10.1103/PhysRevLett.100.134504
[14] Winkel, 26th Symp. on Naval Hydrodynamics (2006)
[15] DOI: 10.1016/S0032-3861(00)00135-X · doi:10.1016/S0032-3861(00)00135-X
[16] White, Viscous Fluid Flow pp 430– (2006)
[17] DOI: 10.1007/s00348-003-0630-0 · doi:10.1007/s00348-003-0630-0
[18] DOI: 10.1016/S0377-0257(01)00156-2 · Zbl 1006.76504 · doi:10.1016/S0377-0257(01)00156-2
[19] DOI: 10.1016/S0377-0257(97)00093-1 · Zbl 0973.76507 · doi:10.1016/S0377-0257(97)00093-1
[20] DOI: 10.1146/annurev.fluid.40.111406.102156 · Zbl 1229.76043 · doi:10.1146/annurev.fluid.40.111406.102156
[21] DOI: 10.1122/1.550550 · doi:10.1122/1.550550
[22] Virk, J. Fluid Mech. 20 pp 22– (1967)
[23] DOI: 10.1146/annurev.fluid.36.050802.122103 · Zbl 1125.76348 · doi:10.1146/annurev.fluid.36.050802.122103
[24] Virk, J. Am. Inst. Chem. Engng 21 pp 625– (1975) · doi:10.1002/aic.690210402
[25] Hansen, Chem. Engng Prog. Symp. Ser. 67 pp 93– (1971)
[26] Vdovin, J. Appl. Mech. Tech. Phys. 22 pp 98– (1981)
[27] DOI: 10.1063/1.1687415 · Zbl 1186.76211 · doi:10.1063/1.1687415
[28] DOI: 10.1007/BF00850033 · doi:10.1007/BF00850033
[29] Fruman, J. Ship Res. 20 pp 171– (1976)
[30] DOI: 10.1063/1.2042489 · Zbl 1187.76539 · doi:10.1063/1.2042489
[31] Frenkel, Acta Physicochim. URSS 19 pp 51– (1944)
[32] DOI: 10.1073/pnas.0607933103 · doi:10.1073/pnas.0607933103
[33] DOI: 10.1017/S0022112092001770 · doi:10.1017/S0022112092001770
[34] DOI: 10.1103/PhysRevLett.89.208301 · doi:10.1103/PhysRevLett.89.208301
[35] DOI: 10.1088/0957-0233/16/9/001 · doi:10.1088/0957-0233/16/9/001
[36] DOI: 10.1063/1.1775192 · Zbl 1187.76502 · doi:10.1063/1.1775192
[37] DOI: 10.1122/1.2789945 · doi:10.1122/1.2789945
[38] DOI: 10.1017/S0022112006008688 · Zbl 1151.76347 · doi:10.1017/S0022112006008688
[39] DOI: 10.1007/s00348-009-0693-7 · doi:10.1007/s00348-009-0693-7
[40] DOI: 10.1016/0017-9310(64)90032-8 · doi:10.1016/0017-9310(64)90032-8
[41] DOI: 10.1017/S0022112008003029 · Zbl 1151.76318 · doi:10.1017/S0022112008003029
[42] Petrie, Proc. 2nd Intl. Symp. on Seawater Drag Reduction pp 605– (2005)
[43] DOI: 10.1063/1.3371957 · Zbl 1188.76045 · doi:10.1063/1.3371957
[44] DOI: 10.1017/S0022112004000291 · Zbl 1067.76052 · doi:10.1017/S0022112004000291
[45] Petrie, Proc. ASME Fluids Engng Div. 237 pp 205– (1996)
[46] DOI: 10.1002/app.1975.070191210 · doi:10.1002/app.1975.070191210
[47] DOI: 10.1007/s00348-003-0589-x · doi:10.1007/s00348-003-0589-x
[48] DOI: 10.1021/ie9507484 · doi:10.1021/ie9507484
[49] Petrie, Proc. ASME Fluids Engng Div. 237 pp 3– (1996)
[50] DOI: 10.1007/BF00198427 · doi:10.1007/BF00198427
[51] DOI: 10.1017/S0022112070002677 · doi:10.1017/S0022112070002677
[52] DOI: 10.1103/PhysRevLett.92.078302 · doi:10.1103/PhysRevLett.92.078302
[53] DOI: 10.1017/S0022112010003952 · Zbl 1225.76022 · doi:10.1017/S0022112010003952
[54] DOI: 10.1016/S0377-0257(00)00195-6 · Zbl 0963.76513 · doi:10.1016/S0377-0257(00)00195-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.