×

Homoclinic solutions for Hamiltonian systems of \(p\)-Laplacian-like type. (English) Zbl 1444.37052

The authors study existence and multiplicity of homoclinic solutions for Hamiltonian systems of \(p\)-Laplacian-like type. Two major results are formulated and proved. The proofs are complete and interesting.

MSC:

37J46 Periodic, homoclinic and heteroclinic orbits of finite-dimensional Hamiltonian systems
37K58 Variational principles and methods for infinite-dimensional Hamiltonian and Lagrangian systems
35B38 Critical points of functionals in context of PDEs (e.g., energy functionals)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bae, JH; Kim, YH, Critical points theorems via the generalized Ekeland variational principle and its applications to equations of \(p(x)\)-Laplace type in \(R^N\), Taiwan. J. Math., 23, 1, 193-229 (2019) · Zbl 1409.58004 · doi:10.11650/tjm/181004
[2] Choi, EB; Kim, JM; Kim, YH, Infinitely many solutions for equations of \(p(x)\)-Laplace type with the nonlinear Neumann boundary condition, Proc. Roy. Soc. Edinb. Sect. A, 148, 1, 1-31 (2018) · Zbl 1391.35163 · doi:10.1017/S0308210517000117
[3] Coti-Zelati, V.; Rabinowitz, PH, Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials, J. Am. Math. Soc., 4, 693-727 (1991) · Zbl 0744.34045 · doi:10.1090/S0894-0347-1991-1119200-3
[4] Diaz, JI, Nonlinear Partial Differential Equations and Free Boundaries (1986), Pitman, Boston: Elliptic Equations, Pitman, Boston
[5] Hewitt, E.; Stromberg, K., Real and Abstract Analysis (1965), New York: Springer, New York · Zbl 0137.03202
[6] Izydorek, M.; Janczewska, J., Homoclinic solutions for nonautonomous second order Hamiltonian systems with a coercive potential, J. Math. Anal. Appl., 335, 1119-1127 (2007) · Zbl 1118.37032 · doi:10.1016/j.jmaa.2007.02.038
[7] Lee, JS; Kim, YH, Existence and multiplicity of solutions for nonlinear elliptic equations of \(p\)-Laplace type in \(R^N\), Filomat, 30, 2029-2043 (2016) · Zbl 1474.35199 · doi:10.2298/FIL1607029L
[8] Lee, SD; Park, K.; Kim, YH, Existence and multiplicity of solutions for equations involving nonhomogeneous operators of \(p(x)\)-Laplace type in \(R^N\), Bound. Value Prob., 2014, 261, 1-17 (2014) · Zbl 1316.35139
[9] Li, XF; Jia, J., New homoclinic solutions for a class of second-order Hamiltonian systems with a mixed condition, Bound. Value Prob., 2018, 133, 1-14 (2018) · Zbl 1499.34259
[10] Lu, SP, Homoclinic solutions for a nonlinear second order differential system with \(p\)-Laplacian operator, Nonlinear Anal. Real World Appl., 12, 1, 525-534 (2011) · Zbl 1229.34068 · doi:10.1016/j.nonrwa.2010.06.037
[11] Lv, X.; Lu, S., Homoclinic solutions for ordinary \(p\)-Laplacian systems, Appl. Math. Comput., 218, 5682-5692 (2012) · Zbl 1252.34049
[12] Lin, XY; Tang, XH, Infinitely many homoclinic orbits of second-order \(p\)-Laplacian systems, Taiwan. J. Math., 17, 4, 1371-1393 (2013) · Zbl 1293.34060 · doi:10.11650/tjm.17.2013.2518
[13] Miyagaki, OH; Santana, CR; Vieira, RS, Ground states of degenerate quasilinear Schrödinger equation with vanishing potentials, Nonlinear Anal., 189, 111587 (2019) · Zbl 1427.35087 · doi:10.1016/j.na.2019.111587
[14] Rabinowitz, PH; Tanaka, K., Some results on connecting orbits for a class of Hamiltonian systems, Math. Z., 206, 473-499 (1990) · Zbl 0707.58022 · doi:10.1007/BF02571356
[15] Sun, J.; Wu, T., Multiplicity and concentration of homoclinic solutions for some second order Hamiltonian system, Nonlinear Anal., 114, 105-115 (2015) · Zbl 1308.34056 · doi:10.1016/j.na.2014.11.009
[16] Shi, X.B., Zhang, Q.F., Zhang, Q.M.: Existence of homoclinic orbits for a class of \(p\)-Laplacian systems in a weighted Sobolev space. Bound. Value Prob. 2013(137) (2013) · Zbl 1297.34061
[17] Tang, XH; Xiao, L., Homoclinic solutions for ordinary \(p\)-Laplacian systems with a coercive potential, Nonlinear Anal., 71, 1124-1132 (2009) · Zbl 1181.34055 · doi:10.1016/j.na.2008.11.027
[18] Tersian, S.: On symmetric positive homoclinic solutions of semilinear \(p\)-Laplacian differential equations. 2012(121) (2012) · Zbl 1281.34032
[19] Wan, LL; Tang, CL, Existence and multiplicity of homoclinic orbits for second order Hamiltonian systems without (AR) condition, Discrete Contin. Dyn. Syst., 15, 255-271 (2011) · Zbl 1216.34033
[20] Wu, DL; Tang, CL; Wu, XP, Homoclinic orbits for a class of second-order Hamiltonian systems with concave-convex nonlinearities, Electron. J. Qual. Theory Differ. Equ., 6, 1-18 (2018) · Zbl 1413.35157 · doi:10.14232/ejqtde.2018.1.6
[21] Wang, ZQ; Willem, M., Singular minimization problems, J. Differ. Equ., 161, 307-320 (2000) · Zbl 0954.35074 · doi:10.1006/jdeq.1999.3699
[22] Ye, YY, Existence and multiplicity of homoclinic solutions for a second-order Hamiltonian system, Electron. J. Qual. Theory Differ. Equ., 11, 1-26 (2019) · Zbl 1438.37037 · doi:10.14232/ejqtde.2019.1.11
[23] Yang, J.; Zhang, FB, Infinitely many homoclinic orbits for the second-order Hamiltonian systems with super-quadratic potentials, Nonlinear Anal., 10, 1417-1423 (2009) · Zbl 1162.34328 · doi:10.1016/j.nonrwa.2008.01.013
[24] Yang, MH; Han, ZQ, Infinitely many homoclinic solutions for second-order Hamiltonian systems with odd nonlinearities, Nonlinear Anal., 74, 2635-2646 (2011) · Zbl 1218.37082 · doi:10.1016/j.na.2010.12.019
[25] Zou, WM; Li, SJ, Infinitely many homoclinic orbits for the second-order hamiltonian systems, Appl. Math. Lett., 16, 1283-1287 (2003) · Zbl 1039.37044 · doi:10.1016/S0893-9659(03)90130-3
[26] Zhang, QF; Tang, XH, Existence of homoclinic orbits for a class of asymptotically \(p\)-linear aperiodic \(p\)-Laplacian systems, App. Math. Comput., 218, 13, 7164-7173 (2012) · Zbl 1251.37065 · doi:10.1016/j.amc.2011.12.084
[27] Zhang, XY, Homoclinic orbits for a class of \(p\)-Laplacian systems with periodic assumption, Electron. J. Qual. Theory Differ. Equ., 2013, 67, 1-26 (2013) · Zbl 1340.34159 · doi:10.14232/ejqtde.2013.1.67
[28] Zhang, ZH; Yuan, R., Homoclinic solutions for \(p\)-Laplacian Hamiltonian systems with combined nonlinearities, Qual. Theory Dyn. Syst., 2017, 16, 761-774 (2017) · Zbl 1392.34054 · doi:10.1007/s12346-016-0219-7
[29] Zeidler, E., Nonlinear Functional Analysis and Its Applications. II/B (1990), New York: Springer, New York · Zbl 0684.47029
[30] Zhou, QM, On the superlinear problems involving \(p(x)\)-Laplacian-like operators without AR-condition, Nonlinear Anal., 12, 161-169 (2015) · Zbl 1304.35471 · doi:10.1016/j.nonrwa.2014.07.003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.