×

Solution of the problem on image reconstruction in computed tomography. (English) Zbl 1338.92058

Summary: This paper describes a new solution of the problem of two-dimensional (2-D) image \(f(x,y)\) reconstruction from a finite number of line-integrals. The reconstruction is a discrete image \(f_{n,m}\) on the Cartesian lattice lying in the \(X\)-\(Y\) plane as is required in all practical applications including imaging in medicine, electron microscopy, radio astronomy, geophysics, etc. The image is reconstructed from a finite number of projections. The values of the image are calculated exactly from the line-integrals. To achieve such a reconstruction of the image, we describe a method of calculation of all required ray-sums of the discrete image \(f_{n,m}\) from the line-integrals of \(f(x,y)\). The paired representation of the image is also considered. The set of projections and number of measurements for each projection are determined (defined) by the complete set of 2-D discrete paired functions which allows composition of the discrete image as a sum of direction images. The model of reconstruction is described, and examples and experimental results of implementation of the proposed method are given. In the framework of the proposed model, the reconstruction is exact. The reconstruction of the image with noise and the reconstruction from a limited range of angles are also described.

MSC:

92C55 Biomedical imaging and signal processing
94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Helgason, S.: The Radon Transform. Progress in Mathematics, vol. 5. Birkhäuser, Boston (1980) · Zbl 0453.43011 · doi:10.1007/978-1-4899-6765-7
[2] Herman, G.T.: Image Reconstruction From Projections. The Fundamentals of Computerized Tomography. Academic Press, New York (1980) · Zbl 0538.92005
[3] Herman, G.T.: The Fundamentals of Computerized Tomography: Image Reconstruction From Projections, 2nd edn. Springer, New York (2009) · Zbl 1280.92002 · doi:10.1007/978-1-84628-723-7
[4] Farkas, H.M., Gunning, R.C., Knopp, M.I., Taylor, B.A. (eds.).: From Fourier analysis and number theory to radon transforms and geometry in memory of Leon Ehrenpreis. In Series: Developments in Mathematics, vol. 28, p. XXVIII. Springer, New York (2013) · Zbl 1250.00009
[5] Herman, G.T., Davidi, R.: On image reconstruction from a small number of projections. Inverse Probl. 24, 045011 (2008) · Zbl 1161.68825 · doi:10.1088/0266-5611/24/4/045011
[6] Herman, G.T., Kuba, A.: Advances in Discrete Tomography and Its Applications. Birkhäuser, Boston (2007) · Zbl 1117.65004 · doi:10.1007/978-0-8176-4543-4
[7] Gordon, R.: A tutorial on ART (algebraic reconstruction techniques). IEEE Trans. Nucl. Sci. 21, 78-93 (1974) · doi:10.1109/TNS.1974.6499238
[8] Willemink, Martin J., Leiner, T., Jong, P.A., Heer, L.M., Nievelstein, R.A.J., Schilham, A.M.R., Budde, R.P.J.: Iterative reconstruction techniques for computed tomography part 2: initial results in dose reduction and image quality. Eur. Radiol. 23(6), 1632-1642 (2013) · doi:10.1007/s00330-012-2764-z
[9] Fleischmann, D., Edward Boas, R.P.J.: Computed tomography old ideas and new technology. Eur. Radiol. 21(3), 510-517 (2011) · doi:10.1007/s00330-011-2056-z
[10] Rademacher, M.; Frank, J. (ed.), Weighted back-projection methods, 245-274 (2006), New York · doi:10.1007/978-0-387-69008-7_9
[11] Grigoryan, A.M., Dougherty, E.R., Kononen, J., Bubendorf, L., Hostetter, G., Kallioniemi, O.P.: Morphological spot counting from stacked images for automated analysis of gene copy numbers by fluorescence in situ hybridization. Biomed. Opt. 7(1), 109-122 (2002) · doi:10.1117/1.1428292
[12] Bubendorf, L., Grigoryan, A.M., Kononen, J., Barlund, M., Monni, O., Kallioniemi, A., Sauter, G., Dougherty, E.R., Kallioniemi, O.: FISH on tissue microarrays: towards automated analysis of genetic alterations in thousands of tumors with multiple probes. In: Proceedings of the Eighth International Workshop on Chromosomes in Solid Tumors, Tucson, AZ, January 30-February 1 (2000)
[13] Katsevich, A.: Theoretically exact filtered backprojection-type inversion algorithm for spiral CT. SIAM J. Appl. Math. 62, 2012-2026 (2002) · Zbl 1017.65106 · doi:10.1137/S0036139901387186
[14] Natterer, F., Wubbbeling, F.: Mathematical Methods in Image Reconstruction. SIAM, Philadelphia (2001) · Zbl 0974.92016 · doi:10.1137/1.9780898718324
[15] Kak, A.C., Slaney, M.: Principles of Computerized Tomographic Imaging. SIAM, Philadelphia (2001) · Zbl 0984.92017 · doi:10.1137/1.9780898719277
[16] Brooks, R.A., Di Chiro, G.: Principles of computer assisted tomography (CAT) in radiographic and radioisotopic imaging. Phys. Med. Biol. 21(5), 689-732 (1976) · doi:10.1088/0031-9155/21/5/001
[17] Haaga, J.R., Alfidi, R.J.: Computed Tomography of the Whole Body. Mosby, St. Louis (1988)
[18] Kalender, W.A.: Computed Tomography: Fundamentals, System Technology, Image Quality, Applications, 2nd edn. Wiley-VCH, Weinheim (2006) · Zbl 1058.65500
[19] Kesidis, A.L., Papamarkos, N.: Exact image reconstruction from a limited number of projections. J. Vis. Commun. Image Represent. 19(5), 285-298 (2008) · doi:10.1016/j.jvcir.2008.03.004
[20] Herman, G.T.: A note on exact image reconstruction from a limited number of projections. J. Vis. Commun. Image Represent. 20(1), 65-67 (2009) · doi:10.1016/j.jvcir.2008.11.004
[21] Candès, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 2, 489-509 (2006) · Zbl 1231.94017 · doi:10.1109/TIT.2005.862083
[22] Candès, E.J., Romberg, J., Tao, T.: Near optimal signal recovery from random projections: universal encoding strategies. IEEE Trans. Inf. Theory 52(12), 5406-5425 (2006) · Zbl 1309.94033 · doi:10.1109/TIT.2006.885507
[23] Grigoryan, A.M.: New algorithms for calculating discrete Fourier transforms. Journal Vichislitelnoi Matematiki i Matematicheskoi Fiziki. AS USSR, Moscow 26(9), 1407-1412 (1986) (translated in http://fasttransforms.com/Art-USSR-papers/Art_JVMATofASUSSR1986) · Zbl 0622.65146
[24] Grigoryan, A.M., Grigoryan, M.M: Two-dimensional Fourier transform in the tensor presentation and new orthogonal functions. Avtometria, AS USSR Siberian section, Novosibirsk 1, 21-27 (1986)
[25] Grigoryan, A.M.: An algorithm for computing the discrete Fourier transform with arbitrary orders. Journal Vichislitelnoi Matematiki i Matematicheskoi Fiziki, AS USSR, Moscow. 30(10), 1576-1581 (1991) (translated in http://fasttransforms.com/Art-USSR-papers/Art_JVMATofASUSSR1991) · Zbl 0751.65072
[26] Grigoryan, A.M.: 2-D and 1-D multi-paired transforms: frequency-time type wavelets. IEEE Trans. Signal Process. 49(2), 344-353 (2001) · Zbl 1369.65185 · doi:10.1109/78.902116
[27] Grigoryan, A.M., Agaian, S.: Tensor form of image representation: enhancement by image-signals. In: Proceedings of the IS&T/SPIEs Symposium on Electronic Imaging Science & Technology, San Jose (2003) · Zbl 1279.94018
[28] Grigoryan, A.M.: Method of paired transforms for reconstruction of images from projections: discrete model. IEEE Trans. Image Process. 12(9), 985-994 (2003) · Zbl 1279.94018 · doi:10.1109/TIP.2003.816017
[29] Grigoryan, A.M., Agaian, S.S.: Multidimensional Discrete Unitary Transforms: Representation, Partitioning and Algorithms. Marcel Dekker Inc., New York (2003) · Zbl 1114.94003
[30] Grigoryan, A.M., Agaian, S.S.: Transform-based image enhancement algorithms with performance measure. In: Advances in Imaging and Electron Physics, vol. 130, pp. 165-242. Elsevier Academic Press, Amsterdam (2004)
[31] Grigoryan, A.M., Du, N.: 2-D images in frequency-time representation: direction images and resolution map. J. Electron. Imaging. 19:3 (033012), 1-14 (2010)
[32] Grigoryan, A.M.: Multidimensional discrete unitary transforms. In: The Third Edition Transforms and Applications Handbook in The Electrical Engineering Handbook Series (Editor in Chief, Prof. Alexander Poularikas). CRC Press Taylor and Francis Group, New York (2010)
[33] Grigoryan, A.M., Du, N.: Principle of superposition by direction images. IEEE Trans. Image Process. 20(9), 2531-2541 (2011) · Zbl 1372.94096 · doi:10.1109/TIP.2011.2128334
[34] Grigoryan, A.M., Naghdali, K.: On a method of paired representation: enhancement and decomposition by series direction images. J. Math. Imaging Vis. 34(2), 185-199 (2009) · Zbl 1490.94017 · doi:10.1007/s10851-009-0141-6
[35] Grigoryan, A.M., Grigoryan, M.M.: Image Processing: Tensor Transform and Discrete Tomography with MATLAB. CRC Press Taylor and Francis Group, New York (2012) · Zbl 1400.94017 · doi:10.1201/b13007
[36] Grigoryan, A.M.: Image reconstruction from finite number of projections: method of transferring geometry. IEEE Trans. Image Process. 22(12), 4738-4751 (2013) · Zbl 1373.94143 · doi:10.1109/TIP.2013.2277822
[37] Grigoryan, A.M.: An algorithm of the two-dimensional Fourier transform, Izvestiya VUZov SSSR, Radioelectronica, USSR, Kiev 27(10), 52-57 (1984) (translated in http://fasttransforms.com/Art-USSR-papers/Art_IzvuzovSSSR1984)
[38] Grigoryan, A.M.: An optimal algorithm for computing the two-dimensional discrete Fourier transform, Izvestiya VUZ SSSR, Radioelectronica, USSR, Kiev 29(12), 20-25 (1986) (translated in http://fasttransforms.com/Art-USSR-papers/Art_IzvuzovSSSR1986)
[39] Candès, E.J., Romberg, J., Tao, T.: Robust uncertainly principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489-509 (2006) · Zbl 1231.94017
[40] Grigoryan, A.M., Du, N.: Novel tensor transform-based method of image reconstruction from limited-angle projection data. In: Proceedings of IS&T/SPIEs 2014 Electronic Imaging: Computational Imaging XII, San Francisco (2014)
[41] Sezan, M.I., Stark, H.: Tomographic image reconstruction from incomplete view data by convex projections and direct Fourier method. IEEE Trans. Med. Imaging MI-3, 91-98 (1984) · doi:10.1109/TMI.1984.4307661
[42] Carazo, J.M., Carrascosa, J.L.: Information recovery in missing angular data cases: an approach by the convex projections method in three dimensions. J. Microsc. 145(1), 23-43 (1987) · doi:10.1111/j.1365-2818.1987.tb01313.x
[43] Carazo, J.M., Carrascosa, J.L.: Restoration of direct Fourier three-dimensional reconstructions of crystalline specimens by the method of convex projections. J. Microsc. 145(2), 159-177 (1987)
[44] Youla, D.C., Webb, H.: Image restoration by the method of convex projections: part 1-theory. IEEE Trans. Med. Imaging MI-1, 81-94 (1982) · doi:10.1109/TMI.1982.4307555
[45] Sezan, M.I., Stark, H.: Image restoration by the method of projections onto convex sets: part 2-applications and numerical results. IEEE Trans. Med. Imaging MI-1, 95-101 (1982) · doi:10.1109/TMI.1982.4307556
[46] Demirkaya, O.: Reduction of noise and image artifacts in computed tomography by nonlinear filtration of the projection images. Proc. SPIE Med. Imaging 4322, 917-923 (2001) · doi:10.1117/12.430964
[47] Lu, H., Hsiao, I.-T., Li, X., Liang, Z.: Noise properties of low-dose CT projections and noise treatment by scale transformations. Proc. IEEE Nucl. Sci. Symp. 3, 1662-1666 (2001)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.