Non-equilibrium dynamics of dense gas under tight confinement. (English) Zbl 1462.76203


76T25 Granular flows
76N15 Gas dynamics (general theory)
82D05 Statistical mechanics of gases
Full Text: DOI


[1] Alam, M.; Mahajan, A.; Shivanna, D., On Knudsen-minimum effect and temperature bimodality in a dilute granular Poiseuille flow, J. Fluid Mech., 782, 99-126, (2015) · Zbl 1381.76380
[2] Aoki, K.; Takata, S.; Nakanishi, T., Poiseuille-type flow of a rarefied gas between two parallel plates driven by a uniform external force, Phys. Rev. E, 65, (2002)
[3] Aranson, I. S.; Tsimring, L. S., Patterns and collective behavior in granular media: theoretical concepts, Rev. Mod. Phys., 78, 641-692, (2006)
[4] Barbante, P.; Frezzotti, A.; Gibelli, L., A kinetic theory description of liquid menisci at the microscale, Kinet. Relat. Models, 8, 235-254, (2015) · Zbl 1362.82044
[5] Baus, M.; Colot, J. L., Thermodynamics and structure of a fluid of hard rods, disks, spheres, or hyperspheres from rescaled virial expansions, Phys. Rev. A, 36, 3912-3925, (1987)
[6] Bobylev, A. V.; Carrillo, J. A.; Gamba, I. M., On some properties of kinetic and hydrodynamic equations for inelastic interactions, J. Stat. Phys., 98, 743-773, (2000) · Zbl 1056.76071
[7] Brey, J. J.; Dufty, J. W.; Santos, A., Dissipative dynamics for hard spheres, J. Stat. Phys., 87, 1051-1066, (1997) · Zbl 0945.82562
[8] Brilliantov, N.; Pöschel, T., Kinetic Theory of Granular Gases, (2004), Oxford University Press · Zbl 1155.76386
[9] Cercignani, C.1963Plane Poiseuille flow and Knudsen minimum effect. In Rarefied Gas Dynamics (ed. Laurmann, J. A.), vol. II, pp. 92-101.
[10] Cercignani, C.; Lampis, M.; Lorenzani, S., On the Reynolds equation for linearized models of the Boltzmann operator, Transp. Theory Stat. Phys., 36, 257-280, (2007) · Zbl 1136.82018
[11] Chapman, S.; Cowling, T. G., The Mathematical Theory of Non-Uniform Gases, (1970), Cambridge University Press · JFM 65.1541.01
[12] Darabi, H.; Ettehad, A.; Javadpour, F.; Sepehrnoori, K., Gas flow in ultra-tight shale strata, J. Fluid Mech., 710, 641-658, (2012) · Zbl 1275.76196
[13] Esteban, M. J.; Perthame, B., On the modified Enskog equation for elastic and inelastic collisions. Models with spin, Ann. Inst. Henri Poincaré, 8, 289-308, (1991) · Zbl 0850.70141
[14] Frezzotti, A., A particle scheme for the numerical solution of the Enskog equation, Phys. Fluids, 9, 1329-1335, (1997) · Zbl 1185.76835
[15] Frezzotti, A., Molecular dynamics and Enskog theory calculation of shock profiles in a dense hard sphere gas, Comput. Math. Applics., 35, 103-112, (1998) · Zbl 0907.35101
[16] Frezzotti, A.; Gibelli, L.; Lorenzani, S., Mean field kinetic theory description of evaporation of a fluid into vacuum, Phys. Fluids, 17, (2005) · Zbl 1187.76165
[17] Fukui, S.; Kaneko, R., Analysis of ultra-thin gas film lubrication based on the linearized Boltzmann equation (influence of accommodation coefficient), JSME Intl J., 30, 1660-1666, (1987)
[18] Fukui, S.; Kaneko, R., A database for interpolation of Poiseuille flow rates for high Knudsen number lubrication problems, J. Tribol., 112, 78-83, (1990)
[19] Galvin, J. E.; Hrenya, C. M.; Wildman, R. D., On the role of the Knudsen layer in rapid granular flows, J. Fluid Mech., 585, 73-92, (2007) · Zbl 1119.76069
[20] Garcia-Rojo, R.; Luding, S.; Brey, J. J., Transport coefficients for dense hard-disk systems, Phys. Rev. E, 74, (2006)
[21] Garzó, V.; Dufty, J. W., Dense fluid transport for inelastic hard spheres, Phys. Rev. E, 59, 5895-5911, (1999)
[22] Goldstein, A.; Shapiro, M., Mechanics of collisional motion of granular materials. Part 1. General hydrodynamic equations, J. Fluid Mech., 282, 75-114, (1995) · Zbl 0881.76010
[23] Grmela, M., Kinetic equation approach to phase transitions, J. Stat. Phys., 3, 347-364, (1971)
[24] Gu, X. J.; Emerson, D. R., A high-order moment approach for capturing non-equilibrium phenomena in the transition regime, J. Fluid Mech., 636, 177-216, (2009) · Zbl 1183.76850
[25] Hadjiconstantinou, N. G., Comment on Cercignani’s second-order slip coefficient, Phys. Fluids, 15, 2352-2354, (2003)
[26] Henderson, D., Simple equation of state for hard disks, Mol. Phys., 30, 971-972, (1975)
[27] Holt, J. K.; Park, H. G.; Wang, Y.; Stadermann, M.; Artyukhin, A. B.; Grigoropoulos, C. P.; Noy, A.; Bakajin, O., Fast mass transport through sub-2-nanometer carbon nanotubes, Science, 312, 1034-1037, (2006)
[28] Karkheck, J.; Stell, G., Mean field kinetic theories, J. Chem. Phys., 75, 1475-1487, (1981)
[29] Karniadakis, G.; Beskok, A.; Aluru, N. R., Microflows and Manoflows: Fundamentals and Simulations, (2005), Springer
[30] Knudsen, M., Die Gesetze der Molekularströmung und der inneren Reibungsströmung der Gase durch Röhren, Ann. Phys., 333, 75-130, (1909) · JFM 40.0825.02
[31] Kon, M.; Kobayashi, K.; Watanabe, M., Method of determining kinetic boundary conditions in net evaporation/condensation, Phys. Fluids, 26, (2014)
[32] Lunati, I.; Lee, S. H., A dual-tube model for gas dynamics in fractured nanoporous shale formations, J. Fluid Mech., 757, 943-971, (2014)
[33] Lutsko, J. F., Transport properties of dense dissipative hard-sphere fluids for arbitrary energy loss models, Phys. Rev. E, 72, (2005)
[34] Ma, J.; Sanchez, J. P.; Wu, K.; Couples, G. D.; Jiang, Z., A pore network model for simulating non-ideal gas flow in micro- and nano-porous materials, Fuel, 116, 498-508, (2014)
[35] Mehmani, A.; Prodanović, M.; Javadpour, F., Multiscale, multiphysics network modeling of shale matrix gas flows, Transp. Porous Med., 88, 377-390, (2013)
[36] Meng, J. P.; Wu, L.; Reese, J. M.; Zhang, Y., Assessment of the ellipsoidal-statistical Bhatnagar-Gross-Krook model for force-driven Poiseuille flows, J. Comput. Phys., 251, 383-395, (2013) · Zbl 1349.82058
[37] Ohwada, T.; Sone, Y.; Aoki, K., Numerical analysis of the Poiseuille and thermal transpiration flows between two parallel plates on the basis of the Boltzmann equation for hard sphere molecules, Phys. Fluids, 1, 2042-2049, (1989) · Zbl 0696.76092
[38] Ohwada, T.; Sone, Y.; Aoki, K., Numerical analysis of the shear and thermal creep flows of a rarefied gas over a plane wall on the basis of the linearzied Boltzmann equation for hard-sphere molecules, Phys. Fluids A, 1, 1588-1599, (1989) · Zbl 0695.76032
[39] Sanchez, I. C., Virial coefficients and close-packing of hard spheres and discs, J. Chem. Phys., 101, 7003-7006, (1994)
[40] Takata, S.; Funagane, H., Poiseuille and thermal transpiration flows of a highly rarefied gas: over-concentration in the velocity distribution function, J. Fluid Mech., 669, 242-259, (2011) · Zbl 1225.76258
[41] Tij, M.; Santos, A., Poiseuille flow in a heated granular gas, J. Stat. Phys., 117, 901-928, (2004) · Zbl 1094.82014
[42] Wang, Q.; Chen, X.; Jha, A.; Rogers, H., Natural gas from shale formation – the evolution, evidences and challenges of shale gas revolution in United States, Renew. Sust. Energ. Rev., 30, 1-28, (2014)
[43] Wu, L.; Zhang, Y.; Reese, J. M., Fast spectral solution of the generalized Enskog equation for dense gases, J. Comput. Phys., 303, 66-79, (2015) · Zbl 1349.76778
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.