×

The maximum principle for optimal control of BSDEs with locally Lipschitz coefficients. (English) Zbl 1497.93239

Summary: The present paper studies a stochastic control problem for a locally Lipschitz backward stochastic differential equation. Assuming that the control domain is not necessarily convex, we establish a necessary and sufficient condition for optimality satisfied by all optimal controls. These conditions are described by a linear locally Lipschitz SDE and a maximum condition on the Hamiltonian. We first prove, under some convenient conditions, the existence of a unique solution to the resulting adjoint equation. Then, with the help of an approximation argument on the coefficients, we define a family of control problems with globally Lipschitz coefficients whereby we derive a stochastic maximum principle for near optimality to such approximated systems. Thereafter, we turn back to the original control problem by passing to the limits. As far as the authors are aware, this is the first version of the stochastic maximum principle covering the locally Lipschitz case.

MSC:

93E20 Optimal stochastic control
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Agram, N., Stochastic optimal control of McKean-Vlasov equations with anticipating law, Afr Mat, 30, 5, 879-901 (2019) · Zbl 1438.60068 · doi:10.1007/s13370-019-00689-w
[2] Cannarsa, P.; Frankowska, H., Value function, relaxation, and transversality conditions in infinite horizon optimal control, J Math Anal Appl, 457, 2, 1188-1217 (2018) · Zbl 1376.49016 · doi:10.1016/j.jmaa.2017.02.009
[3] Bahlali, K., Existence and uniqueness of solutions for BSDEs with locally Lipschitz coefficient, Electron Commun Probab, 7, 169-179 (2002) · Zbl 1008.60075 · doi:10.1214/ECP.v7-1058
[4] Bahlali, K.; Djehiche, B.; Mezerdi, B., On the stochastic maximum principle in optimal control of degenerate diffusions with Lipschitz coefficients, Appl Math Optim, 56, 3, 364-378 (2007) · Zbl 1135.60323 · doi:10.1007/s00245-007-9017-6
[5] Bahlali, K.; Mezerdi, B.; Ouknine, Y., The maximum principle for optimal control of diffusions with non-smooth coefficients, Stoch Int J Probab Stoch Process, 57, 3-4, 303-316 (1996) · Zbl 0891.93079
[6] Bougherara, S.; Khelfallah, N., The maximum principle for partially observed optimal control of FBSDE driven by Teugels Martingales and independent Brownian motion, J Dyn Control Syst, 24, 2, 201-222 (2018) · Zbl 1390.93860 · doi:10.1007/s10883-017-9377-4
[7] Bouleau N, Hirsch F. On the derivability, with respect to the initial data, of the solution of a stochastic differential equation with Lipschitz coefficients. Séminaire de Théorie du Potentiel Paris. Berlin: Springer; 1989. p. 39-57. · Zbl 0671.60053
[8] Chighoub, F.; Djehiche, B.; Mezerdi, B., The stochastic maximum principle in optimal control of degenerate diffusions with non-smooth coefficients, Random Oper Stoch Eq, 17, 1, 37-54 (2009) · Zbl 1224.93131
[9] Crandall, MG; Lions, PL, Viscosity solutions of Hamilton-Jacobi equations, Trans Am Math Soc, 277, 1, 1-42 (1983) · Zbl 0599.35024 · doi:10.1090/S0002-9947-1983-0690039-8
[10] Ferreira, MMA, On the regularity of optimal controls for a class of problems with state constraints, Int J Syst Sci, 37, 8, 495-502 (2006) · Zbl 1096.49020 · doi:10.1080/00207720600783801
[11] Hamadene, S., Equations différentielles stochastiques rétrogrades: Le cas localement lipschitzien, Ann Probab Stat, 32, 5, 645-659 (1996) · Zbl 0893.60031
[12] Hao T, Meng Q. Singular optimal control problems with recursive utilities of mean-field type. Asian Journal of Control.
[13] Khelfallah, N.; Mezerdi, B., Near-optimality conditions in stochastic control of linear fully coupled FBSDEs, Afr Mat, 27, 3-4, 327-343 (2016) · Zbl 1378.93147 · doi:10.1007/s13370-015-0346-3
[14] Kohlmann, M.; Zhou, XY, Relationship between backward stochastic differential equations and stochastic controls: a linear-quadratic approach, SIAM J Control Optim, 38, 5, 1392-1407 (2000) · Zbl 0960.60052 · doi:10.1137/S036301299834973X
[15] Ma, J.; Shen, J.; Zhao, Y., On numerical approximations of forward-backward stochastic differential equations, SIAM J Numer Anal, 46, 5, 2636-2661 (2008) · Zbl 1177.60064 · doi:10.1137/06067393X
[16] Mahmudov, NI; McKibben, MA, On backward stochastic evolution equations in Hilbert spaces and optimal control, Nonlinear Anal Theory Methods Appl, 67, 4, 1260-1274 (2007) · Zbl 1122.60057 · doi:10.1016/j.na.2006.07.013
[17] Brahim, M., Necessary conditions for optimality for a diffusion with a non-smooth drift, Stoch Int J Probab Stoch Process, 24, 4, 305-326 (1988) · Zbl 0651.93077
[18] Milstein, GN; Tretyakov, MV, Numerical algorithms for forward-backward stochastic differential equations, SIAM J Sci Comput, 28, 2, 561-582 (2006) · Zbl 1114.60054 · doi:10.1137/040614426
[19] Nualart, D., The Malliavin calculus and related topics (Vol 1995) (2006), Berlin: Springer, Berlin · Zbl 1099.60003
[20] Orrieri C. 2013. A stochastic maximum principle with dissipativity conditions. arXiv:1309.7757. · Zbl 1332.93381
[21] Xu, W., Stochastic maximum principle for optimal control problem of forward and backward system, ANZIAM J, 37, 2, 172-185 (1995) · Zbl 0862.93067
[22] Xu R, Wu T. 2014. Mean-field backward stochastic evolution equations in Hilbert spaces and optimal control for BSPDEs. Math Probl Eng 2014. · Zbl 1407.60090
[23] Zhou, XY, Sufficient conditions of optimality for stochastic systems with controllable diffusions, IEEE Trans Autom Contr, 41, 8, 1176-1179 (1996) · Zbl 0857.93099 · doi:10.1109/9.533678
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.