×

Extending slow manifold near generic transcritical canard point. (English) Zbl 1388.34056

Canards [E. Benoit et al., Collect. Math. 32, 37–119 (1981; Zbl 0529.34046)] are defined as trajectories of singularly perturbed systems of differential equations that follow a repelling portion of the corresponding slow manifold [N. Fenichel, J. Differ. Equations 31, 53–98 (1979; Zbl 0476.34034)] for a considerable amount of time. Canard dynamics may emerge when a steady state in the system coincides with a bifurcation point of the critical manifold thereof, as is the case when the associated layer problem undergoes a saddle-node bifurcation at a generic fold point [M. Krupa and P. Szmolyan, SIAM J. Math. Anal. 33, No. 2, 286–314 (2001; Zbl 1002.34046)]. An alternative mechanism is related to a loss of normal hyperbolicity at points of self-intersection of the critical manifold. Scenarios where these points are of transcritical or pitchfork type were studied by Krupa and Szmolyan [M. Krupa and P. Szmolyan, Nonlinearity 14, No. 6, 1473–1491 (2001; Zbl 0998.34039)] via the so-called blow-up technique, or geometric desingularisation [F. Dumortier and R. Roussarie, Mem. Am. Math. Soc. 577, 100 p. (1996; Zbl 0851.34057)]; however, no detailed analysis of the potential for canard dynamics was attempted there.
Here, the authors investigate the emergence of canards in a family of planar fast-slow systems in a neighbourhood of a transcritical point. They show that, under certain non-degeneracy assumptions on the associated local normal form for that family, a maximal canard will exist for a unique critical value of a parameter which is introduced by the requisite normal form transformation, and they derive an asymptotic expansion for that critical value. Moreover, they identify a second value for the same parameter which separates the regime where the incoming attracting branch of the corresponding slow manifold undergoes passage along the fast flow of the system from the regime where a connection exists between the incoming and outgoing attracting branches of that manifold. Their analysis is similar in spirit to that in [Zbl 0998.34039], and relies on a detailed blow-up of the transcritical point, in combination with a variety of dynamical systems techniques which include centre manifold theory and a Melnikov computation. Finally, a simple illustrative example is presented.

MSC:

34E17 Canard solutions to ordinary differential equations
34E15 Singular perturbations for ordinary differential equations
34E20 Singular perturbations, turning point theory, WKB methods for ordinary differential equations
34C20 Transformation and reduction of ordinary differential equations and systems, normal forms
34C23 Bifurcation theory for ordinary differential equations
34C45 Invariant manifolds for ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Benoit, E., Callot, J.F., Diener, F., Diener, M. Chasse au canard. Collectanea Mathematica, 31-32: 37-119 (1981) · Zbl 0529.34046
[2] Benoit, E. Perturbation singuli re en dimension trois: Canards en un point pseudo-singulier neoud. Bulletin de la Société Mathématique de France, 129-1: 91-113 (2001) · Zbl 0992.34072 · doi:10.24033/bsmf.2387
[3] Brfns, M.; Bar-Eli, K., Canard explosion and excitation in a model of the Belousov-Zhabotinskii (1991)
[4] Callot, J.L. Champs lents-rapides complexes à une dimension lente. Annales scientifiques de l’Ecole Normale Supérieure, 4, 26: 149-173 (1993) · Zbl 0769.34005 · doi:10.24033/asens.1669
[5] Chiba, H. Periodic orbits and chaos in fast-slow systems with Bogdanov-Takens type fold points. J. Differential Equations, 250: 112-160 (2011) · Zbl 1213.34063 · doi:10.1016/j.jde.2010.09.022
[6] Dumortier, F. Singularities of vector field on the plane. J. Differential Equations, 23(1): 53-106 (1977) · Zbl 0346.58002 · doi:10.1016/0022-0396(77)90136-X
[7] Dumortier, F.; Szlomiuk, D. (ed.), Techniques in the theory of local bifurcations: Blow-up, normal forms, nilpotent bifurcations, singular perturbations (1993), Dordrecht · Zbl 0791.58069
[8] Dumortier, F., Roussarie, F. Canard cycles and center manifold. Men. Amer. Math. Soc., 121, 1996 · Zbl 0851.34057
[9] Dumortier, F., Roussarie, F. Geometric singular perturbation theory beyond normal hyperbolicity. In: Multiple-Time-Scale Dynamical Systems (C.K.R.T. Jones and A. Khibnik, Eds.) IMA Volumes in Mathematics and its Applications, Vol. 122, 29-64, Springer-Verlag, Berlin/New York, 2001 · Zbl 1007.34058 · doi:10.1007/978-1-4613-0117-2_2
[10] Dumortier, F., Llibre, J., Artés, J.C. Qualitative theory of planar differential systems, Universitext. Springer-Verlag, Berlin, 2006. · Zbl 1110.34002
[11] Diener, M. Regularizing microscopes and rivers. SIAM J. Appl. Math., 25: 148-173 (1994) · Zbl 0794.34048 · doi:10.1137/S0036141091219377
[12] Eckhaus, W. Relaxation oscillations including a standard chase on French ducks. In: Asymptotic Analysis II, Lecture Notes in Mathematics, Vol. 985, 449-494, Springer-Verlag, Berlin/New York, 1983 · Zbl 0509.34037 · doi:10.1007/BFb0062381
[13] Fenichel, N. Grometric singular perturbation theory for ordinary differential equations. J. Differential Equations, 31: 53-98 (1979) · Zbl 0476.34034 · doi:10.1016/0022-0396(79)90152-9
[14] Haberman, R. Slowly varying jump and transition phenomena associated with algebraic bifurcation problems. SIAM J. Appl. Math., 37: 69-106 (1979) · Zbl 0417.34028 · doi:10.1137/0137006
[15] Jones, C.K.R.T. Geometric singular perturbation theory. In: Dynamical Systems (Montencatini Terme, 1994), in: Lecture Notes in Mathematics, vol. 1609, Springer, 1995, 44-118 · Zbl 0840.58040
[16] Krupa, M., Szmolyan, P. Extending geometric singular perturbation theory to nonhyperbolic points-fold and canard points in two dimensions. SIAM J. Math. Anal., 33(2): 286-314 (2001) · Zbl 1002.34046 · doi:10.1137/S0036141099360919
[17] Krupa, M., Szmolyan, P. Relaxation oscillation and canard explosion. J. Differential Equations, 174: 312-368 (2001) · Zbl 0994.34032 · doi:10.1006/jdeq.2000.3929
[18] Krupa, M., Szmolyan, P. Extending slow manifold near transcritical and pitchfork singularites. Nonlinearity, 14(6): 1473-1491 (2001) · Zbl 0998.34039 · doi:10.1088/0951-7715/14/6/304
[19] van Gils, S., Krupa, M., Szmolyan, P. Asymptotic expansions using blow-up. Z. Angew. Math. Phys., 56(3): 369-397 (2005) · Zbl 1081.34052 · doi:10.1007/s00033-004-1021-y
[20] Lebovitz, N.R., Schaar, R.J. Exchange of stabilities in autonomous systems. Stud. Appl. Math., 54: 229-260 (1975) · Zbl 0312.34040 · doi:10.1002/sapm1975543229
[21] Lebovitz, N.R., Schaar, R.J. Exchange of stabilities in autonomous systems II. Vertical bifurcations Stud. Appl. Math., 56: 1-50 (1977) · Zbl 0355.34047 · doi:10.1002/sapm19775611
[22] Mishchenko, E.F., Kolesov, Yu.S., Kolesov, A.Yu., Rozov, N.Kh. Asymptotic Methods in Singularly Perturbed Systems. Consultants Bureau, New York, London, 1994 · Zbl 0947.34046 · doi:10.1007/978-1-4615-2377-2
[23] Szmolyan, P., Wechselberger, M. Canards in R3. J. Differential Equations, 177: 419-453 (2001) · Zbl 1007.34057 · doi:10.1006/jdeq.2001.4001
[24] Wiggins, S. Normally Hyperbolic Invariant Manifolds in Dynamical Systems. Springer-Verlag, New York, 1994 · Zbl 0812.58001 · doi:10.1007/978-1-4612-4312-0
[25] Xie, F., Han, M.A. Existence of canards under non-generic conditions. Chin. Ann. Math., 30B(3): 239-250 (2009) · Zbl 1275.34055 · doi:10.1007/s11401-008-0225-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.