×

Central limit theorems for biorthogonal ensembles and asymptotics of recurrence coefficients. (English) Zbl 1351.15022

Summary: We study fluctuations of linear statistics corresponding to smooth functions for certain biorthogonal ensembles. We study those biorthogonal ensembles for which the underlying biorthogonal family satisfies a finite term recurrence and describe the asymptotic fluctuations using right limits of the recurrence matrix. As a consequence, we show that whenever the right limit is a Laurent matrix, a central limit theorem holds. We will also discuss the implications for orthogonal polynomial ensembles. In particular, we obtain a central limit theorem for the orthogonal polynomial ensemble associated with any measure belonging to the Nevai class of an interval. Our results also extend previous results on unitary ensembles in the one-cut case. Finally, we will illustrate our results by deriving central limit theorems for the Hahn ensemble for lozenge tilings of a hexagon and for the Hermitian two matrix model.

MSC:

15B52 Random matrices (algebraic aspects)
60B20 Random matrices (probabilistic aspects)
60F05 Central limit and other weak theorems
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Anderson, Greg W.; Guionnet, Alice; Zeitouni, Ofer, An introduction to random matrices, Cambridge Studies in Advanced Mathematics 118, xiv+492 pp. (2010), Cambridge University Press, Cambridge · Zbl 1184.15023
[2] Baik, J.; Kriecherbauer, T.; McLaughlin, K. T.-R.; Miller, P. D., Discrete orthogonal polynomials, Annals of Mathematics Studies 164, viii+170 pp. (2007), Princeton University Press, Princeton, NJ · Zbl 1119.41001
[3] Basor, Estelle L.; Widom, Harold, On a Toeplitz determinant identity of Borodin and Okounkov, Integral Equations Operator Theory, 37, 4, 397\textendash 401 pp. (2000) · Zbl 0967.47020 · doi:10.1007/BF01192828
[4] Bertola, M.; Eynard, B.; Harnad, J., Duality, biorthogonal polynomials and multi-matrix models, Comm. Math. Phys., 229, 1, 73\textendash 120 pp. (2002) · Zbl 1033.15015 · doi:10.1007/s002200200663
[5] Borodin, Alexei, Biorthogonal ensembles, Nuclear Phys. B, 536, 3, 704\textendash 732 pp. (1999) · Zbl 0948.82018 · doi:10.1016/S0550-3213(98)00642-7
[6] Borodin, Alexei; Ferrari, Patrik L., Anisotropic growth of random surfaces in \(2+1\) dimensions, Comm. Math. Phys., 325, 2, 603\textendash 684 pp. (2014) · Zbl 1303.82015 · doi:10.1007/s00220-013-1823-x
[7] Borodin, Alexei, CLT for spectra of submatrices of Wigner random matrices, Mosc. Math. J., 14, 1, 29\textendash 38, 170 pp. (2014) · Zbl 1315.60005
[8] Borodin, A.; Bufetov, A., A CLT for Plancherel representations of the infinite-dimensional unitary group · Zbl 1278.60045
[9] Borodin, Alexei; Gorin, Vadim, General \(\beta \)-Jacobi corners process and the Gaussian free field, Comm. Pure Appl. Math., 68, 10, 1774\textendash 1844 pp. (2015) · Zbl 1325.60076 · doi:10.1002/cpa.21546
[10] Breuer, Jonathan, Sine kernel asymptotics for a class of singular measures, J. Approx. Theory, 163, 10, 1478\textendash 1491 pp. (2011) · Zbl 1228.42028 · doi:10.1016/j.jat.2011.05.006
[11] Breuer, Jonathan; Duits, Maurice, The Nevai condition and a local law of large numbers for orthogonal polynomial ensembles, Adv. Math., 265, 441\textendash 484 pp. (2014) · Zbl 1335.60031 · doi:10.1016/j.aim.2014.07.026
[12] Breuer, Jonathan; Last, Yoram; Simon, Barry, The Nevai condition, Constr. Approx., 32, 2, 221\textendash 254 pp. (2010) · Zbl 1198.42021 · doi:10.1007/s00365-009-9055-1
[13] Breuer, Jonathan; Simon, Barry, Natural boundaries and spectral theory, Adv. Math., 226, 6, 4902\textendash 4920 pp. (2011) · Zbl 1219.30001 · doi:10.1016/j.aim.2010.12.019
[14] B{\"o}ttcher, Albrecht; Silbermann, Bernd, Introduction to large truncated Toeplitz matrices, Universitext, xii+258 pp. (1999), Springer-Verlag, New York · Zbl 0916.15012 · doi:10.1007/978-1-4612-1426-7
[15] Borodin, Alexei, Determinantal point processes. The Oxford handbook of random matrix theory, 231\textendash 249 pp. (2011), Oxford Univ. Press, Oxford · Zbl 1238.60055
[16] Costin, Ovidiu; Lebowitz, Joel L., Gaussian fluctuation in random matrices, Phys. Rev. Lett., 75, 1, 69\textendash 72 pp. (1995)
[17] Damanik, David; Killip, Rowan; Simon, Barry, Perturbations of orthogonal polynomials with periodic recursion coefficients, Ann. of Math. (2), 171, 3, 1931\textendash 2010 pp. (2010) · Zbl 1194.47031 · doi:10.4007/annals.2010.171.1931
[18] Deift, P. A., Orthogonal polynomials and random matrices: a Riemann-Hilbert approach, Courant Lecture Notes in Mathematics 3, viii+273 pp. (1999), New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI
[19] Deift, P.; Kriecherbauer, T.; McLaughlin, K. T.-R.; Venakides, S.; Zhou, X., Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory, Comm. Pure Appl. Math., 52, 11, 1335\textendash 1425 pp. (1999) · Zbl 0944.42013 · doi:10.1002/(SICI)1097-0312(199911)52:\(11\langle
[20] Deift, P.; Kriecherbauer, T.; McLaughlin, K. T-R; Venakides, S.; Zhou, X., Strong asymptotics of orthogonal polynomials with respect to exponential weights, Comm. Pure Appl. Math., 52, 12, 1491\textendash 1552 pp. (1999) · Zbl 1026.42024 · doi:10.1002/(SICI)1097-0312(199912)52:\(12\langle
[21] Denisov, Sergey A., On Rakhmanov’s theorem for Jacobi matrices, Proc. Amer. Math. Soc., 132, 3, 847\textendash 852 pp. (2004) · Zbl 1050.47024 · doi:10.1090/S0002-9939-03-07157-0
[22] Diaconis, Persi, Patterns in eigenvalues: the 70th Josiah Willard Gibbs lecture, Bull. Amer. Math. Soc. (N.S.), 40, 2, 155\textendash 178 pp. (2003) · Zbl 1161.15302 · doi:10.1090/S0273-0979-03-00975-3
[23] Duits, Maurice, Gaussian free field in an interlacing particle system with two jump rates, Comm. Pure Appl. Math., 66, 4, 600\textendash 643 pp. (2013) · Zbl 1259.82091 · doi:10.1002/cpa.21419
[24] Duits, Maurice; Geudens, Dries; Kuijlaars, Arno B. J., A vector equilibrium problem for the two-matrix model in the quartic/quadratic case, Nonlinearity, 24, 3, 951\textendash 993 pp. (2011) · Zbl 1211.31006 · doi:10.1088/0951-7715/24/3/012
[25] Duits, Maurice; Kuijlaars, Arno B. J.; Mo, Man Yue, The Hermitian two matrix model with an even quartic potential, Mem. Amer. Math. Soc., 217, 1022, v+105 pp. (2012) · Zbl 1247.15032 · doi:10.1090/S0065-9266-2011-00639-8
[26] Dumitriu, Ioana; Paquette, Elliot, Global fluctuations for linear statistics of \(\beta \)-Jacobi ensembles, Random Matrices Theory Appl., 1, 4, 1250013, 60 pp. (2012) · Zbl 1268.60009 · doi:10.1142/S201032631250013X
[27] Ehrhardt, T., A generalization of Pincus’ formula and Toeplitz operator determinants, Arch. Math. (Basel), 80, 3, 302\textendash 309 pp. (2003) · Zbl 1042.47013
[28] Ercolani, Nicholas M.; McLaughlin, Kenneth T.-R., Asymptotics and integrable structures for biorthogonal polynomials associated to a random two-matrix model, Phys. D, 152/153, 232\textendash 268 pp. (2001) · Zbl 1038.82042 · doi:10.1016/S0167-2789(01)00173-7
[29] Eynard, Bertrand; Mehta, Madan Lal, Matrices coupled in a chain. I. Eigenvalue correlations, J. Phys. A, 31, 19, 4449\textendash 4456 pp. (1998) · Zbl 0938.15012 · doi:10.1088/0305-4470/31/19/010
[30] Forrester, P. J., Log-gases and random matrices, London Mathematical Society Monographs Series 34, xiv+791 pp. (2010), Princeton University Press, Princeton, NJ · Zbl 1217.82003 · doi:10.1515/9781400835416
[31] Gohberg, Israel; Goldberg, Seymour; Krupnik, Nahum, Traces and determinants of linear operators, Operator Theory: Advances and Applications 116, x+258 pp. (2000), Birkh\"auser Verlag, Basel · Zbl 0946.47013 · doi:10.1007/978-3-0348-8401-3
[32] Hough, J. Ben; Krishnapur, Manjunath; Peres, Yuval; Vir{\'a}g, B{\'a}lint, Determinantal processes and independence, Probab. Surv., 3, 206\textendash 229 pp. (2006) · Zbl 1189.60101 · doi:10.1214/154957806000000078
[33] Johansson, Kurt, On random matrices from the compact classical groups, Ann. of Math. (2), 145, 3, 519\textendash 545 pp. (1997) · Zbl 0883.60010 · doi:10.2307/2951843
[34] Johansson, Kurt, On fluctuations of eigenvalues of random Hermitian matrices, Duke Math. J., 91, 1, 151\textendash 204 pp. (1998) · Zbl 1039.82504 · doi:10.1215/S0012-7094-98-09108-6
[35] Johansson, Kurt, Non-intersecting paths, random tilings and random matrices, Probab. Theory Related Fields, 123, 2, 225\textendash 280 pp. (2002) · Zbl 1008.60019 · doi:10.1007/s004400100187
[36] Johansson, Kurt, Random matrices and determinantal processes. Mathematical statistical physics, 1\textendash 55 pp. (2006), Elsevier B. V., Amsterdam · Zbl 1411.60144 · doi:10.1016/S0924-8099(06)80038-7
[37] Kiselev, Alexander; Last, Yoram; Simon, Barry, Modified Pr\`“ufer and EFGP transforms and the spectral analysis of one-dimensional Schr\'”odinger operators, Comm. Math. Phys., 194, 1, 1\textendash 45 pp. (1998) · Zbl 0912.34074 · doi:10.1007/s002200050346
[38] Koekoek, Roelof; Lesky, Peter A.; Swarttouw, Ren{\'e} F., Hypergeometric orthogonal polynomials and their \(q\)-analogues, Springer Monographs in Mathematics, xx+578 pp. (2010), Springer-Verlag, Berlin · Zbl 1200.33012 · doi:10.1007/978-3-642-05014-5
[39] Kriecherbauer, T.; Shcherbina, M., Fluctuations of eigenvalues of matrix models and their applications
[40] Kuijlaars, Arno B. J., Multiple orthogonal polynomial ensembles. Recent trends in orthogonal polynomials and approximation theory, Contemp. Math. 507, 155\textendash 176 pp. (2010), Amer. Math. Soc., Providence, RI · Zbl 1218.60005 · doi:10.1090/conm/507/09958
[41] Kuijlaars, A. B. J.; Van Assche, W., The asymptotic zero distribution of orthogonal polynomials with varying recurrence coefficients, J. Approx. Theory, 99, 1, 167\textendash 197 pp. (1999) · Zbl 0967.33009 · doi:10.1006/jath.1999.3316
[42] K{\"o}nig, Wolfgang, Orthogonal polynomial ensembles in probability theory, Probab. Surv., 2, 385\textendash 447 pp. (2005) · Zbl 1189.60024 · doi:10.1214/154957805100000177
[43] Last, Yoram, Spectral theory of Sturm-Liouville operators on infinite intervals: a review of recent developments. Sturm-Liouville theory, 99\textendash 120 pp. (2005), Birkh\"auser, Basel · Zbl 1098.39011 · doi:10.1007/3-7643-7359-8\_5
[44] Last, Yoram; Simon, Barry, Eigenfunctions, transfer matrices, and absolutely continuous spectrum of one-dimensional Schr\"odinger operators, Invent. Math., 135, 2, 329\textendash 367 pp. (1999) · Zbl 0931.34066 · doi:10.1007/s002220050288
[45] Last, Yoram; Simon, Barry, The essential spectrum of Schr\"odinger, Jacobi, and CMV operators, J. Anal. Math., 98, 183\textendash 220 pp. (2006) · Zbl 1145.34052 · doi:10.1007/BF02790275
[46] Lyons, Russell, Determinantal probability measures, Publ. Math. Inst. Hautes \'Etudes Sci., 98, 167\textendash 212 pp. (2003) · Zbl 1055.60003 · doi:10.1007/s10240-003-0016-0
[47] Na{\u \i }man, P. B., On the theory of periodic and limit-periodic Jacobian matrices, Dokl. Akad. Nauk SSSR, 143, 277\textendash 279 pp. (1962)
[48] Na{\u \i }man, P. B., On the spectral theory of non-symmetric periodic Jacobi matrices, Zap. Meh.-Mat. Fak. Har\cprime kov. Gos. Univ. i Har\cprime kov. Mat. Ob\v s\v c. (4), 30, 138\textendash 151 pp. (1964)
[49] Pastur, L., Limiting laws of linear eigenvalue statistics for Hermitian matrix models, J. Math. Phys., 47, 10, 103303, 22 pp. (2006) · Zbl 1112.82022 · doi:10.1063/1.2356796
[50] Pastur, Leonid; Shcherbina, Mariya, Eigenvalue distribution of large random matrices, Mathematical Surveys and Monographs 171, xiv+632 pp. (2011), American Mathematical Society, Providence, RI · Zbl 1244.15002 · doi:10.1090/surv/171
[51] Pearson, D. B., Singular continuous measures in scattering theory, Comm. Math. Phys., 60, 1, 13\textendash 36 pp. (1978) · Zbl 0451.47013
[52] Petrov, Leonid, Asymptotics of uniformly random lozenge tilings of polygons. Gaussian free field, Ann. Probab., 43, 1, 1\textendash 43 pp. (2015) · Zbl 1315.60062 · doi:10.1214/12-AOP823
[53] Rakhmanov, E. A., On the asymptotics of the ratio of orthogonal polynomials, Math.USSR Sb., 32, 199\textendash 213 pp. (1977) · Zbl 0401.30033
[54] Rakhmanov, E. A., On the asymptotics of the ratio of orthogonal polynomials II, Math.USSR Sb., 46, 105\textendash 117 pp. (1983) · Zbl 0515.30030
[55] Reed, Michael; Simon, Barry, Methods of modern mathematical physics. IV. Analysis of operators, xv+396 pp. (1978), Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London · Zbl 0401.47001
[56] Remling, Christian, The absolutely continuous spectrum of Jacobi matrices, Ann. of Math. (2), 174, 1, 125\textendash 171 pp. (2011) · Zbl 1235.47032 · doi:10.4007/annals.2011.174.1.4
[57] Shcherbina, M., Fluctuations of linear eigenvalue statistics of \(\beta\) matrix models in the multi-cut regime, J. Stat. Phys., 151, 6, 1004\textendash 1034 pp. (2013) · Zbl 1273.15042 · doi:10.1007/s10955-013-0740-x
[58] Simon, Barry, Trace ideals and their applications, Mathematical Surveys and Monographs 120, viii+150 pp. (2005), American Mathematical Society, Providence, RI · Zbl 1074.47001
[59] Simon, Barry, Szeg\H o’s theorem and its descendants, M. B. Porter Lectures, xii+650 pp. (2011), Princeton University Press, Princeton, NJ · Zbl 1230.33001
[60] Soshnikov, Alexander B., Gaussian fluctuation for the number of particles in Airy, Bessel, sine, and other determinantal random point fields, J. Stat. Phys., 100, 3-4, 491\textendash 522 pp. (2000) · Zbl 1041.82001 · doi:10.1023/A:1018672622921
[61] Soshnikov, Alexander, Gaussian limit for determinantal random point fields, Ann. Probab., 30, 1, 171\textendash 187 pp. (2002) · Zbl 1033.60063 · doi:10.1214/aop/1020107764
[62] Soshnikov, A., Determinantal random point fields, Uspekhi Mat. Nauk. Russian Math. Surveys, 55 55, 5, 923\textendash 975 pp. (2000) · Zbl 0991.60038 · doi:10.1070/rm2000v055n05ABEH000321
[63] Soshnikov, A., Determinantal random point fields. Encyclopedia of Mathematical Physics, 47\textendash 53 pp. (2006), Elsevier, Oxford
[64] Stahl, H.; Totik, V., General Orthogonal Polynomials. Encyclopedia of Mathematics and its Applications, 43 (1992), Cambridge University Press, Cambridge
[65] The Oxford handbook of random matrix theory, xxxii+919 pp. (2011), Oxford University Press, Oxford · Zbl 1225.15004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.