×

The evolutionary dynamics of a spatial multi-strain host-pathogen system with cross-immunity. (English) Zbl 1235.93229

Summary: We considered a Susceptible-Infective-Recovered-Susceptible (SIRS) model with strain mutation and cross-immunity in a non-spatial model and a lattice-structured model, where all individuals can reproduce if the space/resources allow. In the lattice-structured model, both the host reproduction and pathogen transmission processes are assumed to interact with next nearest neighbors, and the model was analyzed by an improved pair approximation (IPA). A family of correlated equations of pair approximation and mean-field were presented. We show the phase diagram of the coexistence and extinction which were obtained from parameterization by measuring the basic reproduction numbers of the strains during their infection processes. The qualitative results of the pair approximation model are similar to that of the corresponding non-spatial model. Furthermore, the spatial model predicts coexistence over a wider range of parameters than the non-spatial model. In particular, when the strain evolution tends to a larger basic reproduction number, the correlated spatial approximation could predict better than the mean-field approximation.

MSC:

93E03 Stochastic systems in control theory (general)
93A30 Mathematical modelling of systems (MSC2010)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Thrall, P. H.; Burdon, J. J., Evolution of virulence in a plant host-pathogen metapopulation, Science, 299, 5613, 1735-1737 (2003)
[2] Nelson, M. I.; Holmes, E. C., The evolution of epidemic influenza, Nat. Rev. Genet., 8, 3, 196-205 (2007), 10.1038/nrg2053
[3] Harvell, D., Ecology and evolution of host-pathogen interactions in nature, Am. Nat., 164, 5, S1-S5 (2004)
[4] Schrag, S. J.; Perrot, V., Reproducing antibiotic resistance, Nature, 381, 120-121 (1996)
[5] Fenner, F., Biological control as exemplified by smallpox eradication and myxomatosis, Proc. R. Soc. London B, 218, 259-285 (1983)
[6] Sayama, H.; Kaufman, L.; Bar-Yam, Y., Symmetry breaking and coarsening in spatially distributed evolutionary processes including sexual reproduction and disruptive selection, Phys. Rev. E, 62, 7065-7069 (2000)
[7] Minayev, P.; Ferguson, N., Incorporating demographic stochasticity into multi-strain epidemic models: application to influenza A, J. Roy. Soc. Interface (2009)
[8] Boots, M.; Hudson, P. J.; Sasaki, A., Large shifts in pathogen virulence relate to host population structure, Science, 303, 5659, 842-844 (2004)
[9] Minayev, P.; Ferguson, N., Improving the realism of deterministic multi-strain models: implications for modelling influenza A, J. Roy. Soc. Interface, 509-518 (2009)
[10] Webb, S. D.; Keeling, M. J.; Boots, M., Spatially extended host-parasite interactions: the role of recovery and immunity, Theoret. Popul. Biol., 71, 2, 251-266 (2007) · Zbl 1118.92066
[11] Parham, P. E.; Singh, B. K.; Ferguson, N. M., Analytic approximation of spatial epidemic models of foot and mouth disease, Theoret. Popul. Biol., 73, 3, 349-368 (2008) · Zbl 1209.92053
[12] Eames, K., Modelling disease spread through random and regular contacts in clustered populations, Theoret. Popul. Biol., 73, 1, 104-111 (2008) · Zbl 1202.92076
[13] Xiao, Y.; French, N. P.; Bowers, R. G.; Clancy, D., Pair approximations and the inclusion of indirect transmission: theory and application to between farm transmission of salmonella, J. Theoret. Biol., 244, 3, 532-540 (2007) · Zbl 1450.92076
[14] Stollenwerk, N.; Martins, J.; Pinto, A., The phase transition lines in pair approximation for the basic reinfection model siri, Phys. Lett. A, 371, 5-6, 379-388 (2007)
[15] Ohtsuka, K.; Konno, N.; Masuda, N.; Aihara, K., Phase diagrams and correlation inequalities of a three-state stochastic epidemic model on the square lattice, Int. J. Bifur. Chaos Appl. Sci. Eng., 16, 12, 3687-3693 (2006) · Zbl 1113.92058
[16] Anderson, R. M.; May, R. M., Population biology of infectious disease: part I, Nature, 280, 361-367 (1979)
[17] Anderson, R. M.; May, R. M., Infectious Diseases of Humans: Dynamics and Control (1991), Oxford University Press: Oxford University Press Oxford
[18] Rohani, P.; Earn, D. J.; Finkenstadt, B.; Grenfell, B. T., Population dynamics interference among childhood disease, Proc. R. Soc. London B, 265, 2033-2041 (1998)
[19] Ellner, S.; Turchin, P., Chaos in a noisy world: new methods and evidence from time-series analysis, Am. Natl., 145, 343-375 (1995)
[20] Ellner, S.; Bailey, B. A.; Bobashev, G. V.; Gallant, A. R.; Grenfell, B. T.; Nychka, D. W., Noise and nonlinearity in measles epidemics: combining mechanistic and statistical approaches to population modeling, Am. Nat., 151, 425-440 (1998)
[21] Fitch, W. M.; Bush, R. M.; Bender, C. A.; Cox, N. J., Long term trends in the evolution of H3HA1 human influenza type A, Proc. Natl. Acad. Sci. USA, 94, 7712-7718 (1997)
[22] Gupta, S.; Swinton, J.; Anderson, R. M., Theoretical studies of the effects of heterogeneity in the parasite population on the trnsmission dynamics of malaria, Proc. R. Soc. London B, 256, 231-238 (1994)
[23] Kawaguchi, I.; Sasaki, A.; Boots, M., Why are dengue virus serotypes so distantly related? Enhancement and limiting serotype similarity between dengue virus strains, Proc. R. Soc. London B, 270, 2241-2247 (2003)
[24] Andreasen, V.; Lin, J.; Livin, S. A., The dynamics if cocirculating infuluenza strains coinferring partial cross-immunity, J. Math. Biol., 35, 825-842 (1997) · Zbl 0874.92023
[25] Haraguchi, Y.; Sasaki, A., Evolutionary pattern of intra-host pathogen antigenic drift: effect of cross-reactivity in immune response, Phil. Trans. R. Soc. London B, 352, 11-20 (1997)
[26] Kamo, M.; Sasaki, A., The effect of cross-immunity and seasonal forcing in a multi-strain epidemic model, Physica D, 165, 228-241 (2002) · Zbl 0993.92030
[27] Bauch, C. T., The spread of infection disease in spatially structured populations: an invasory pair approximation, Math. Biosc., 198, 217-237 (2005) · Zbl 1089.92041
[28] Dieckmann, U.; Law, R.; Metz, J. A.J., I.I. for applied systems analysis, (The Geometry of Ecological Interactions: Simplifying Spatial Complexity (2000), Cambridge University Press: Cambridge University Press Cambridge, UK, New York, NY, USA)
[29] Bauch, C. T., The spread of infectious diseases in spatially structured populations: an invasory pair approximation, Math. Biosci., 198, 2, 217-237 (2005) · Zbl 1089.92041
[30] Sato, K.; Matsuda, H.; Sasaki, A., Pathogen invasion and host extinction in lattice structured populations, J. Math. Biol., 32, 251-268 (1994) · Zbl 0790.92022
[31] Harada, Y.; Ezoe, H.; Iwasa, Y.; Matsuda, H.; Satō, K., Population persistence and spatially limited social interaction, Theoret. Popul. Biol., 48, 65-91 (1995) · Zbl 0842.92028
[32] van den Berg, J.; Grimmett, G. R.; Schinazi, R. B., Dependent random graphs and spatial epidemics, Ann. Appl. Probab., 8, 317-336 (1998) · Zbl 0946.92028
[33] Liu, Q.-X.; Wang, R.-H.; Jin, Z., Persistence, extinction and spatio-temporal synchronization of sirs spatial models, J. Stat. Mech., 2009, 07, P07007 (2009)
[34] Anderson, R. M.; May, R. M., The population dynamics of micro-parasites and their invertebrate host, Phil. Trans. R. Soc. London B, 291, 451-524 (1981)
[35] Boots, M.; Sasaki, A., Small world and the evolution of virulence: infedtion occurs locally and at a distance, Proc. R. Soc. London B, 266, 1933-1938 (1999)
[36] Keeling, M. J., The effects of local spatial structures on epidemiological einvasions, Proc. R. Soc. London B, 266, 859-867 (1999)
[37] Matsuda, H.; Ogita, A.; Sasaki, A.; Sato, K., Statistical mechanics of population—the lattice Lotk-Volterra model, Progr. Theoret. Phys., 88, 1035-1049 (1992)
[38] Kamo, M.; Sasaki, A.; Boots, M., The role of trade-off shapes in the evolution of parasites in a spatial host populations: an approximate analytical approach, J. Theoret. Biol., 244, 588-596 (2007) · Zbl 1450.92065
[39] van Ballegooijen, W. M.; Boerlijst, M. C., Emergent trade-offs and selection for outbreak frequency in spatial epidemics, Proc. Natl. Acad. Sci. USA, 101, 52, 18246-18250 (2004)
[40] Liu, Q.-X.; Jin, Z.; Liu, M.-X., Spatial organization and evolution period of the epidemic model using cellular automata, Phys. Rev. E, 74, 031110 (2006)
[41] Hassell, M. P.; Comins, H. N.; Mayt, R. M., Spatial structure and chaos in insect population dynamics, Nature, 353, 6341, 255-258 (1991)
[42] Rohani, P.; Miramontes, O., Host-parasitoid metapopulations: the consequences of parasitoid aggregation on spatial dynamics and searching efficiency, Proc. R. Soc. London B, 260, 1359, 335-342 (1995)
[43] Liu, Q.-X.; Wang, R.-H.; Jin, Z.; van de Koppel, J.; Alonso, D., Spatial self-organization in a multi-strain host-pathogen system, J. Stat. Mech., 2010, 05, P05017 (2010)
[44] Cauchemez, S.; Bhattarai, A.; Marchbanks, T. L.; Fagan, R. P.; Ostroff, S.; Ferguson, N. M.; Swerdlow, D., The Pennsylvania H1N1 working group, role of social networks in shaping disease transmission during a community outbreak of 2009 h1n1 pandemic influenza, Proc. Natl. Acad. Sci. USA, 108, 7, 2825-2830 (2011)
[45] Rohani, P.; Zhong, X.; King, A. A., Contact network structure explains the changing epidemiology of pertussis, Science, 330, 6006, 982-985 (2010)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.