×

Weak QMV algebras and some ring-like structures. (English) Zbl 1402.03097

Summary: In this work, we propose a new quantum structure- – weak quantum MV algebras (wQMV algebras) – and define coupled bimonoids and strong coupled bimonoids. We find that the coupled bimonoids and strong coupled bimonoids are ring-like structures corresponding to lattice-ordered wQMV algebras and lattice-ordered QMV algebras, respectively. Using an automated reasoning tool, we give the smallest 4-element wQMV algebra but not a QMV algebra. We also show that lattice-ordered wQMV algebras are the real nondistributive generalization of MV algebras. Certainly, most important properties of quantum MV algebras (QMV algebras) are preserved by wQMV algebras. Furthermore, we can conclude that lattice-ordered wQMV algebras are the simplest unsharp quantum logical structures by far, based on which computation theory could be set up.

MSC:

03G12 Quantum logic
06D35 MV-algebras
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Birkhoff G, von Neumann J (1936) The logic of quantum mechanics. Ann Math 37(4):823-843 · JFM 62.1061.04 · doi:10.2307/1968621
[2] Chang CC (1958) Algebraic analysis of many valued logics. Trans Am Math Soc 88:467-490 · Zbl 0084.00704 · doi:10.1090/S0002-9947-1958-0094302-9
[3] Chang CC (1959) A new proof of the completeness of the Łukasiewicz axioms. Trans Am Math Soc 93:74-80 · Zbl 0093.01104
[4] Chiara MD, Giuntini R, Greechie R (2004) Reasoning in quantum theory—sharp and unsharp quantum logic. Kluwer Academic Publishers, Dordrecht · Zbl 1059.81003
[5] Di Nola A, Gerla B (2005) Algebras of łukasiewicz logic and their semiring reducts. In: Litvinov GL, Maslov VP (eds) Idempotent mathematics and mathematical physics. Contemp. Math., vol 377, pp 131-144. American Mathematical Society, Providence · Zbl 1081.06009
[6] Dvurečenskig A, Pulmannová S (2000) New trends in quantum structures. Kluwer/Ister Science, Dordrecht/Bratislava · Zbl 0987.81005 · doi:10.1007/978-94-017-2422-7
[7] Foulis DJ, Bennett MK (1994) Effect algebras and unsharp quantum logics. Found Phys 24(10):1331-1352 · Zbl 1213.06004 · doi:10.1007/BF02283036
[8] Gerla B (2003) Many-valued logic and semirings. Neural Netw World 5:467-480
[9] Giuntini R (1996) Quantum MV algebras. Studia Logica 56:393-417 · Zbl 0854.03057 · doi:10.1007/BF00372773
[10] Giuntini R (1998) Quantum MV-algebras and commutativity. Int J Theor Phys 37(1):65-74 · Zbl 0906.03062 · doi:10.1023/A:1026609121718
[11] Giuntini R (2005) Weakly linear quantum MV-algebras. Algebra Univers 53:45-72 · Zbl 1093.06011 · doi:10.1007/s00012-005-1907-3
[12] Giuntini R, Greuling H (1989) Toward a formal language for unsharp properties. Found Phys 20:931-935 · doi:10.1007/BF01889307
[13] Gudder S (1995) Total extensions of effect algebras. Found Phys Lett 8:243-252 · doi:10.1007/BF02187348
[14] Kalmbach G (1983) Orthomodular lattices. Academic Press, New York · Zbl 0512.06011
[15] Kôpka F, Chovanec F (1994) D-posets. Math Slovaca 44:21-34 · Zbl 0789.03048
[16] Ludwig G (1983) Foundations of quantum mechanics, vol 1. Springer, Berlin · Zbl 0509.46057
[17] Qiu DW (2004) Automata theory based on quantum logic: some characterizations. Inf Comput 190(2):179-195 · Zbl 1074.68020 · doi:10.1016/j.ic.2003.11.003
[18] Qiu DW (2007) Automata theory based on quantum logic: reversibilities and pushdown automata. Theor Comput Sci 386:38-56 · Zbl 1137.68036 · doi:10.1016/j.tcs.2007.05.026
[19] Shang Y, Lu RQ (2007) Semirings and pseudo MV algebras. Soft Comput 11:847-853 · Zbl 1124.06006 · doi:10.1007/s00500-006-0136-9
[20] Shang Y, Lu X, Lu RQ (2009) Automata theory based on unsharp quantum logic. Math Struct Comput Sci 19:737-756 · Zbl 1172.68037 · doi:10.1017/S0960129509007701
[21] Shang Y, Lu X, Lu RQ (2012) A theory of computation based on unsharp quantum logic: finite state automata and pushdown automata. Theor Comput Sci 434:53-86 · Zbl 1254.68123 · doi:10.1016/j.tcs.2012.02.018
[22] Ying MS (2000a) Automata theory based on quantum logic (I). Int J Theor Phys 39(4):981-991 · Zbl 0962.03029 · doi:10.1023/A:1003642222321
[23] Ying MS (2000b) Automata theory based on quantum logic (II). Int J Theor Phys 39(11):2545-2557 · Zbl 1047.81007 · doi:10.1023/A:1026453524064
[24] Ying MS (2005) A theory of computation based on quantum logic (I). Theor Comput Sci 344(2,3):134-207 · Zbl 1079.68035 · doi:10.1016/j.tcs.2005.04.001
[25] Zhang J, Zhang H (1995) SEM: a system for enumerating models. In: Proceedings of international joint conference on AI (IJCAI-95), pp 298-303 · Zbl 1079.68035
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.