×

Multiscale measures of phase-space trajectories. (English) Zbl 1451.37100

Summary: Characterizing the multiscale nature of fluctuations from nonlinear and nonstationary time series is one of the most intensively studied contemporary problems in nonlinear sciences. In this work, we address this problem by combining two established concepts – empirical mode decomposition (EMD) and generalized fractal dimensions – into a unified analysis framework. Specifically, we demonstrate that the intrinsic mode functions derived by EMD can be used as a source of local (in terms of scales) information about the properties of the phase-space trajectory of the system under study, allowing us to derive multiscale measures when looking at the behavior of the generalized fractal dimensions at different scales. This formalism is applied to three well-known low-dimensional deterministic dynamical systems (the Hénon map, the Lorenz ’63 system, and the standard map), three realizations of fractional Brownian motion with different Hurst exponents, and two somewhat higher-dimensional deterministic dynamical systems (the Lorenz ’96 model and the on-off intermittency model). These examples allow us to assess the performance of our formalism with respect to practically relevant aspects like additive noise, different initial conditions, the length of the time series under study, low- vs high-dimensional dynamics, and bursting effects. Finally, by taking advantage of two real-world systems whose multiscale features have been widely investigated (a marine stack record providing a proxy of the global ice volume variability of the past \(5 \times 10^6\) years and the SYM-H geomagnetic index), we also illustrate the applicability of this formalism to real-world time series.
©2020 American Institute of Physics

MSC:

37M10 Time series analysis of dynamical systems
62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Lovejoy, S.; Schertzer, D., The Weather and Climate: Emergent Laws and Multifractal Cascades, 475 (2013), Cambridge University Press: Cambridge University Press, Cambridge · Zbl 1378.86002
[2] Shao, Z.-G.; Ditlevsen, P. D., Nat. Commun., 7, 10951 (2016) · doi:10.1038/ncomms10951
[3] Frisch, U., Turbulence. The Legacy of A. N. Kolmogorov, 296 (1995), Cambridge University Press: Cambridge University Press, Cambridge · Zbl 0832.76001
[4] Bruno, R.; Carbone, V., Turbulence in the Solar Wind, 267 (2016), Springer: Springer, Heidelberg
[5] Consolini, G.; Alberti, T.; De Michelis, P., J. Geophys. Res., 123, 9065 (2018) · doi:10.1029/2018JA025952
[6] Grassberger, P.; Schreiber, T.; Schaffrath, C., Int. J. Bifurc. Chaos, 01, 521-547 (1991) · Zbl 0874.58029 · doi:10.1142/S0218127491000403
[7] Pincus, S. M., Proc. Natl. Acad. Sci. U.S.A., 88, 2297-2301 (1991) · Zbl 0756.60103 · doi:10.1073/pnas.88.6.2297
[8] Costa, M.; Goldberger, A. L.; Peng, C.-K., Phys. Rev. Lett., 89, 062102 (2002) · doi:10.1103/PhysRevLett.89.068102
[9] Mandelbrot, B. B., The Fractal Geometry of Nature, 468 (1982), Freeman: Freeman, San Francisco · Zbl 0504.28001
[10] Donner, R. V.; Heitzig, J.; Donges, J. F.; Zou, Y.; Marwan, N.; Kurths, J., Eur. Phys. J. B, 84, 653-627 (2011) · Zbl 1515.37092 · doi:10.1140/epjb/e2011-10899-1
[11] Hentschel, H. G. E.; Procaccia, I., Physica D, 8, 435 (1983) · Zbl 0538.58026 · doi:10.1016/0167-2789(83)90235-X
[12] Grassberger, P.; Procaccia, I., Phys. Rev. Lett., 50, 346 (1983) · doi:10.1103/PhysRevLett.50.346
[13] Halsey, T. C.; Jensen, M. H.; Kadanoff, L. P.; Procaccia, I., Phys. Rev. A, 33, 1141 (1986) · Zbl 1184.37028 · doi:10.1103/PhysRevA.33.1141
[14] Parisi, G. and Frisch, U., in Proceedings of the International School on Turbulence and Predictability in Geophysical Fluid Dynamics and Climate Dynamics (North-Holland, Amsterdam, 1985), p. 84.
[15] Harte, D., Multifractals. Theory and Applications, 264 (2001), Chapman & Hall: Chapman & Hall, London · Zbl 1016.62111
[16] Anselmet, F.; Gagne, Y.; Hopfinger, E. J.; Antonia, R. A., J. Fluid Mech., 140, 63 (1984) · doi:10.1017/S0022112084000513
[17] Castaing, B.; Gagne, Y.; Hopfinger, E. J., Physica D, 46, 177 (1990) · Zbl 0718.60097 · doi:10.1016/0167-2789(90)90035-N
[18] Marsch, E.; Liu, S., Ann. Geophys., 11, 227 (1993)
[19] Sorriso-Valvo, L.; Carbone, V.; Veltri, P.; Consolini, G.; Bruno, R., Geophys. Res. Lett., 26, 1801 (1999) · doi:10.1029/1999GL900270
[20] Carbone, V.; Marino, R.; Sorriso-Valvo, L.; Noullez, A.; Bruno, R., Phys. Rev. Lett., 103, 061102 (2009) · doi:10.1103/PhysRevLett.103.061102
[21] Alberti, T.; Consolini, G.; Carbone, V.; Yordanova, E.; Marcucci, M. F.; De Michelis, P., Entropy, 21, 320 (2019) · doi:10.3390/e21030320
[22] Meneveau, C.; Sreenivasan, K. R., Phys. Lett. A, 137, 103 (1989) · doi:10.1016/0375-9601(89)90093-5
[23] Vassiliadis, D. V.; Sharma, A. S.; Eastman, T. E.; Papadopoulos, K., Geophys. Res. Lett., 17, 1841 (1990) · doi:10.1029/GL017i011p01841
[24] Consolini, G.; Marcucci, M. F.; Candidi, M., Phys. Rev. Lett., 76, 4082 (1996) · doi:10.1103/PhysRevLett.76.4082
[25] Shannon, C. E., Bell Syst. Tech. J., 27, 379 (1948) · Zbl 1154.94303 · doi:10.1002/j.1538-7305.1948.tb01338.x
[26] Palus, M., Phys. Lett. A, 213, 138 (1996) · Zbl 0972.82548 · doi:10.1016/0375-9601(96)00116-8
[27] Schreiber, T., Phys. Rev. Lett., 85, 461 (2000) · doi:10.1103/PhysRevLett.85.461
[28] Palus, M.; Krakovská, A.; Jakubík, J.; Chvosteková, M., Chaos, 28, 075307 (2018) · Zbl 1396.37085 · doi:10.1063/1.5019944
[29] Kantz, H.; Schreiber, T., Nonlinear Time Series Analysis, 388 (2004), Cambridge University Press: Cambridge University Press, Cambridge · Zbl 1050.62093
[30] Dijkstra, H. A., Nonlinear Climate Dynamics (2013), Cambridge University Press: Cambridge University Press, Cambridge · Zbl 1275.86001
[31] Lorenz, E. N., J. Atmos. Sci., 20, 130 (1963) · Zbl 1417.37129 · doi:10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
[32] Gallavotti, G., Statistical Mechanics. A Short Treatise, 354 (2000), Springer-Verlag: Springer-Verlag, Berlin
[33] Einstein, A., Ann. Phys., 17, 549 (1905) · JFM 36.0975.01 · doi:10.1002/andp.19053220806
[34] Langevin, P., C.R. Acad. Sci. Paris, 146, 530 (1908) · JFM 39.0847.03
[35] Richardson, L. F., Weather Prediction by Numerical Process, 250 (2007), Cambridge University Press: Cambridge University Press, Cambridge · Zbl 1205.86026
[36] Pope, S. B., Turbulent Flows, 771 (2000), Cambridge University Press: Cambridge University Press, Cambridge · Zbl 0966.76002
[37] Kolmogorov, A. N., Dokl. Akad. Nauk SSSR, 30, 301 (1941)
[38] Huang, N. E., Proc. R. Soc. London Ser. A, 454, 903 (1998) · Zbl 0945.62093 · doi:10.1098/rspa.1998.0193
[39] Lisiecki, L. E.; Raymo, M. E., Paleoceanography, 20, 437 (2005) · doi:10.1029/2004PA001071
[40] Iyemori, T., J. Geomagn. Geoelectr., 42, 1249 (1990) · doi:10.5636/jgg.42.1249
[41] Flandrin, P.; Rilling, G.; Goncalves, P., IEEE Signal Process. Lett., 11, 2 (2004) · doi:10.1109/LSP.2003.821662
[42] Rilling, G., Flandrin, P., and Goncalves, P., in Proceedings of the IEEE-EURASIP, Workshop on Nonlinear Signal and Image Processing NSIP-03, Grado, Italy (IEEE, 2003).
[43] Alberti, T., Il Nuovo Cimento, 41C, 113 (2018) · doi:10.1393/ncc/i2018-18113-9
[44] Consolini, G., J. Phys. Conf. Ser., 900, 012003 (2017) · doi:10.1088/1742-6596/900/1/012003
[45] Reid, J. G. and Trainor, T. A., “Correlation analysis with scale-local entropy measures,” arXiv:math-ph/0304010 (2003a).
[46] Reid, J. G. and Trainor, T. A., “Scale-local dimensions of strange attractors,” arXiv:math-ph/0305022 (2003b).
[47] Grassberger, P., Phys. Lett. A, 107, 101 (1985) · Zbl 1177.28013 · doi:10.1016/0375-9601(85)90724-8
[48] Henon, M., Comm. Math. Phys., 50, 69 (1976) · Zbl 0576.58018 · doi:10.1007/BF01608556
[49] da Costa, R. A.; Eisencraft, M., Proceedings of the 8th International Conference on Nonlinear Science and Complexity, 42 (2016), SWGE Sistemas · doi:10.20906/CPS/NSC2016-0042
[50] Takens, F., “Detecting strange attractors in turbulence,” in Dynamical Systems and Turbulence, Lecture Notes in Mathematics, edited by D. A. Rand and L.-S. Young (Springer-Verlag, 1981), Vol. 898, pp. 366-381. · Zbl 0513.58032
[51] Ming-Wei, Z.; Guo-Lin, F.; Xin-Quan, G., Chin. Phys., 15, 1384 (2006) · doi:10.1088/1009-1963/15/6/043
[52] Argyris, J.; Andreadis, I.; Pavlos, G.; Athanasiou, M., Chaos Soliton. Fract., 9, 343 (1998) · Zbl 0933.37045 · doi:10.1016/S0960-0779(97)00120-3
[53] Wu, Z.; Huang, N. E., Proc. R. Soc. London A, 460, 1597 (2004) · Zbl 1062.62005 · doi:10.1098/rspa.2003.1221
[54] Farmer, D.; Crutchfield, J.; Froehling, H.; Packard, N.; Shaw, R., Ann. New York Acad. Sci., 357, 453 (1980) · Zbl 0475.58011 · doi:10.1111/j.1749-6632.1980.tb29710.x
[55] Park, E.-H.; Zaks, M.-A.; Kurths, J., Phys. Rev. E, 60, 6627 (1999) · Zbl 1062.37502 · doi:10.1103/PhysRevE.60.6627
[56] Lucarini, V., J. Stat. Phys., 134, 381 (2009) · Zbl 1162.82015 · doi:10.1007/s10955-008-9675-z
[57] Cvitanovic, P.; Jensen, M. H.; Kadanoff, L. P.; Procaccia, I., Phys. Rev. Lett., 55, 343 (1985) · doi:10.1103/PhysRevLett.55.343
[58] Voyatzis, G., Low frequency power spectra and classification of Hamiltonian trajectories, Galaxies and Chaos, 626, 126-136 (2003), Springer · doi:10.1007/978-3-540-45040-5_10
[59] Zou, Y.; Donner, R. V.; Thiel, M.; Kurths, J., Chaos, 26, 023120 (2016) · Zbl 1390.37136 · doi:10.1063/1.4942584
[60] Harsoula, M.; Karamanos, K.; Contopoulos, G., Phys. Rev. E, 99, 032203 (2019) · doi:10.1103/PhysRevE.99.032203
[61] Lorenz, E. N., Proc. Seminar Predict., 1, 1 (1996)
[62] Lorenz, E. N.; Emanuel, K. A., J. Atmos. Sci., 655, 399 (1998) · doi:10.1175/1520-0469(1998)055<0399:OSFSWO>2.0.CO;2
[63] Karimi, A.; Paul, M. L., Chaos, 20, 043105 (2010) · doi:10.1063/1.3496397
[64] Kaplan, J. L.; Yorke, J. A., Chaotic behavior of multidimensional difference equations, Functional Differential Equations and Approximation of Fixed Points · Zbl 0448.58020 · doi:10.1007/BFb0064319
[65] Platt, N.; Spiegel, E. A.; Tresser, C., Phys. Rev. Lett., 70, 279 (1993) · doi:10.1103/PhysRevLett.70.279
[66] Ditlevsen, P. D.; Ashwin, P., Front. Phys., 6, 62 (2018) · doi:10.3389/fphy.2018.00062
[67] Crucifix, M., Philos. Trans. R. Soc. A, 370, 1140 (2012) · doi:10.1098/rsta.2011.0315
[68] Daruka, I.; Ditlevsen, P. D., Clim. Dyn., 46, 29 (2016) · doi:10.1007/s00382-015-2564-7
[69] Lekscha, J.; Donner, R. V., Chaos, 28, 085702 (2018) · Zbl 1396.86011 · doi:10.1063/1.5023860
[70] Alberti, T.; Consolini, G.; De Michelis, P.; Laurenza, M.; Marcucci, M. F., J. Space Weather Space Clim., 8, A56 (2018) · doi:10.1051/swsc/2018039
[71] Tsurutani, B.; Sugiura, M.; Iyemori, T.; Goldstein, B. E.; Gonzalez, W. D.; Akasofu, S.-I.; Smith, E. J., Geophys. Res. Lett., 17, 279-282 (1990) · doi:10.1029/GL017i003p00279
[72] Sharma, R.; Pachori, R. B.; Acharya, U. R., Entropy, 17, 669 (2015) · doi:10.3390/e17020669
[73] Laiw, S.-S.; Chiu, F.-Y., Adv. Adapt. Data Anal., 2, 509 (2010) · doi:10.1142/S1793536910000598
[74] Hramov, A. E.; Koronovskii, A. A., Chaos, 14, 603 (2004) · Zbl 1080.37029 · doi:10.1063/1.1775991
[75] Koronovskii, A. A.; Hramov, A. E., Techn. Phys. Lett., 30, 29 (2004)
[76] Donner, R.; Donner, R. V.; Barbosa, S. M., Phase coherence analysis of decadal-scale sunspot activity on both solar hemispheres, Nonlinear Time Series Analysis in the Geosciences, 112, 355-385 (2008), Springer · Zbl 1149.86310 · doi:10.1007/978-3-540-78938-3_16
[77] Gupta, S.; De, S.; Janaki, M. S.; Sekar Iyengar, A. N., Phys. Rev. E, 100, 022218 (2019) · doi:10.1103/PhysRevE.100.022218
[78] Palus, M., Phys. Rev. Lett., 112, 078702 (2014) · doi:10.1103/PhysRevLett.112.078702
[79] Palus, M., Entropy, 16, 5263 (2014) · doi:10.3390/e16105263
[80] Alberti, T.; Consolini, G.; Carbone, V., Chaos, 29, 103107 (2019) · Zbl 1426.37031 · doi:10.1063/1.5109534
[81] Lovejoy, S., Nonlin. Process. Geophys. Discuss. · doi:10.5194/npg-2019-39
[82] Rehman, N.; Mandic, D. P., Proc. R. Soc. A, 466, 1291 (2010) · Zbl 1191.94049 · doi:10.1098/rspa.2009.0502
[83] See https://omniweb.gsfc.nasa.gov/ for OMNI data in GSFC/SPDF OMNIWeb interface.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.