×

An extended finite element method for the simulation of particulate viscoelastic flows. (English) Zbl 1274.76247

Summary: We present an extended finite element method (XFEM) for the direct numerical simulation of the flow of viscoelastic fluids with suspended particles. For moving particle problems, we devise a temporary arbitrary Lagrangian-Eulerian (ALE) scheme which defines the mapping of field variables at previous time levels onto the computational mesh at the current time level. In this method, a regular mesh is used for the whole computational domain including both fluid and particles. A temporary ALE mesh is constructed separately and the computational mesh is kept unchanged throughout the whole computations. Particles are moving on a fixed Eulerian mesh without any need of re-meshing. For mesh refinements around the interface, we combine XFEM with the grid deformation method, in which nodal points are redistributed close to the interface while preserving the mesh topology. Our method is verified by comparing with the results of boundary fitted mesh problems combined with the conventional ALE scheme. The proposed method shows similar accuracy compared with boundary fitted mesh problems and superior accuracy compared with the fictitious domain method. If the grid deformation method is combined with XFEM, the required computational time is reduced significantly compared to uniform mesh refinements, while providing mesh convergent solutions. We apply the proposed method to the particle migration in rotating Couette flow of a Giesekus fluid. We investigate the effect of initial particle positions, the Weissenberg number, the mobility parameter of the Giesekus model and the particle size on the particle migration. We also show two-particle interactions in confined shear flow of a viscoelastic fluid. We find three different regimes of particle motions according to initial separations of particles.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
76A10 Viscoelastic fluids
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Hu, H. H.; Joseph, D. D.; Crochet, M. J.: Direct simulation of fluid particle motions, Theoretical and computational fluid dynamics 3, 285-306 (1992) · Zbl 0754.76054 · doi:10.1007/BF00717645
[2] Hu, H. H.: Direct simulation of flows of solid – liquid mixtures, International journal of multiphase flow 22, 335-352 (1996) · Zbl 1135.76442 · doi:10.1016/0301-9322(95)00068-2
[3] Hu, H. H.; Patankar, N. A.; Zhu, M. Y.: Direct numerical simulations of fluid – solid systems using the arbitrary Lagrangian – Eulerian technique, Journal of computational physics 169, 427-462 (2001) · Zbl 1047.76571 · doi:10.1006/jcph.2000.6592
[4] Glowinski, R.; Pan, T. W.; Periaux, J.: A fictitious domain method for external incompressible viscous flow modeled by Navier – Stokes equations, Computer methods in applied mechanics and engineering 112, 133-148 (1994) · Zbl 0845.76069 · doi:10.1016/0045-7825(94)90022-1
[5] Glowinski, R.; Pan, T. W.; Periaux, J.: Distributed Lagrange multiplier methods for incompressible viscous flow around moving rigid bodies, Computer methods in applied mechanics and engineering 151, 181-194 (1998) · Zbl 0916.76052 · doi:10.1016/S0045-7825(97)00116-3
[6] Glowinski, R.; Pan, T. W.; Hesla, T. I.; Joseph, D. D.: A distributed Lagrange multiplier/fictitious domain method for particulate flows, International journal of multiphase flow 25, 755-794 (1999) · Zbl 1137.76592 · doi:10.1016/S0301-9322(98)00048-2
[7] Belytschko, T.; Black, T.: Elastic crack growth in finite elements with minimal remeshing, International journal for numerical methods in engineering 45, 601-620 (1999) · Zbl 0943.74061 · doi:10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
[8] Moës, N.; Dolbow, J.; Belytschko, T.: A finite element method for crack growth without remeshing, International journal for numerical methods in engineering 46, 131-150 (1999) · Zbl 0955.74066 · doi:10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
[9] Wagner, G. J.; Moës, N.; Liu, W. K.; Belytschko, T.: The extended finite element method for rigid particles in Stokes flow, International journal for numerical methods in engineering 51, 293-313 (2001) · Zbl 0998.76054 · doi:10.1002/nme.169
[10] Gerstenberger, A.; Wall, W. A.: An extended finite element method/Lagrange multiplier based approach for fluid – structure interaction, Computer methods in applied mechanics and engineering 197, 1699-1714 (2008) · Zbl 1194.76117 · doi:10.1016/j.cma.2007.07.002
[11] Zilian, A.; Legay, A.: The enriched space – time finite element method (EST) for simultaneous solution of fluid – structure interaction, International journal for numerical methods in engineering 75, 305-334 (2008) · Zbl 1195.74212 · doi:10.1002/nme.2258
[12] Belytschko, T.; Gracie, R.; Ventura, G.: A review of extended/generalized finite element methods for material modeling, Modelling and simulation in materials science and engineering 17, 043001 (2009) · Zbl 1195.74201
[13] Y.J. Choi, M.A. Hulsen, H.E.H. Meijer, An extended finite element method for the simulation of viscoelastic flows around rigid bodies, International Journal for Numerical Methods in Engineering, submitted for publication. · Zbl 1274.76247
[14] Fattal, R.; Kupferman, R.: Constitutive laws for the matrix-logarithm of the conformation tensor, Journal of non-Newtonian fluid mechanics 123, 281-285 (2004) · Zbl 1084.76005 · doi:10.1016/j.jnnfm.2004.08.008
[15] Hulsen, M. A.; Fattal, R.; Kupferman, R.: Flow of viscoelastic fluids past a cylinder at high weissenberg number: stabilized simulations using matrix logarithms, Journal of non-Newtonian fluid mechanics 127, 27-39 (2005) · Zbl 1187.76615 · doi:10.1016/j.jnnfm.2005.01.002
[16] Brown, R. A.; Szady, M. J.; Northy, P. J.; Armstrong, R. C.: On the numerical stability of mixed finite-element methods for viscoelastic flows governed by differential constitutive equations, Theoretical and computational fluid dynamics 5, 77-106 (1993) · Zbl 0785.76039 · doi:10.1007/BF00311812
[17] Guénette, R.; Fortin, M.: A new mixed finite element method for computing viscoelastic flows, Journal of non-Newtonian fluid mechanics 60, 27-52 (1995)
[18] Bogaerds, A. C. B.; Grillet, A. M.; Peters, G. W. M.; Baaijens, F. P. T.: Stability analysis of polymer shear flows using the extended pom-pom constitutive equations, Journal of non-Newtonian fluid mechanics 108, 187-208 (2002) · Zbl 1143.76363 · doi:10.1016/S0377-0257(02)00130-1
[19] Brooks, A. N.; Hughes, T. J. R.: Streamline upwind/Petrov – Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier – Stokes equations, Computer methods in applied mechanics and engineering 32, 199-259 (1982) · Zbl 0497.76041 · doi:10.1016/0045-7825(82)90071-8
[20] Babuška, I.; Melenk, J. M.: The partition of unity method, International journal for numerical methods in engineering 40, 727-758 (1997) · Zbl 0949.65117 · doi:10.1002/(SICI)1097-0207(19970228)40:4<727::AID-NME86>3.0.CO;2-N
[21] Sukumar, N.; Chopp, D. L.; Moës, N.; Belytschko, T.: Modeling holes and inclusions by level sets in the extended finite-element method, Computer methods in applied mechanics and engineering 190, 6183-6200 (2001) · Zbl 1029.74049 · doi:10.1016/S0045-7825(01)00215-8
[22] Min, C.; Gibou, F.: Geometric integration over irregular domains with application to level-set methods, Journal of computational physics 226, 1432-1443 (2007) · Zbl 1125.65021 · doi:10.1016/j.jcp.2007.05.032
[23] G. D’Avino, M.A. Hulsen, A comparison between a collocation and weak implementation of the rigid-body motion constraint on a particle surface, International Journal for Numerical Methods in Fluids, in press.
[24] Grajewski, M.; Këster, M.; Turek, S.: Mathematical and numerical analysis of a robust and efficient grid deformation method in the finite element context, SIAM journal on scientific computing 31, 1539-1557 (2009) · Zbl 1211.65160 · doi:10.1137/050639387
[25] D’avino, G.; Tucillo, T.; Maffettone, P. L.; Greco, F.; Hulsen, M. A.: Numerical simulations of particle migration in a viscoelastic fluid subjected to shear flow, Computers and fluids 39, 709-721 (2010) · Zbl 1242.76338
[26] Hwang, W. R.; Hulsen, M. A.; Meijer, H. E. H.: Direct simulation of particle suspensions in sliding bi-periodic frames, Journal of computational physics 194, 742-772 (2004) · Zbl 1100.76539 · doi:10.1016/j.jcp.2003.09.023
[27] Hwang, W. R.; Hulsen, M. A.; Meijer, H. E. H.: Direct simulations of particle suspensions in a viscoelastic fluid in sliding bi-periodic frames, Journal of non-Newtonian fluid mechanics 121, 15-33 (2004) · Zbl 1143.76591 · doi:10.1016/j.jnnfm.2004.03.008
[28] F. Snijkers, Effects of viscoelasticity on particle motions in sheared suspensions, PhD thesis, Katholieke Universiteit Leuven, Leuven, Belgium, 2009.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.