×

Dynamic disturbance decoupling for nonlinear discrete-time systems. (English) Zbl 0882.93015

Authors’ summary: We study the dynamic disturbance decoupling problem for nonlinear discrete-time systems that are considered in a neighbourhood of a given reference trajectory. Furthermore, the connection between the solvability of this problem and the solvability of the corresponding problem for the time-varying linear discrete-time system obtained by linearizing the original system along the given reference trajectory is investigated. For this purpose, a geometric disturbance decoupling theory for time-varying linear discrete-time systems is developed.
Reviewer: A.Perdon (Ancona)

MSC:

93B27 Geometric methods
93B52 Feedback control
93C73 Perturbations in control/observation systems
93C55 Discrete-time control/observation systems
PDFBibTeX XMLCite
Full Text: EuDML Link

References:

[1] G. Basile G. Marro: Controlled and conditioned invariant subspaces in linear system theory. J. Optim. Theory Appl. 3 (1969), 306-315. · Zbl 0172.12501 · doi:10.1007/BF00931370
[2] S. P. Bhattacharyya: Disturbance rejection in linear systems. Internat. J. Systems Sci. 5 (1974), 633-637. · Zbl 0295.93003 · doi:10.1080/00207727408920129
[3] M. D. Di Benedetto J. W. Grizzle C. H. Moog: Rank invariants of nonlinear systems. SIAM J. Control Optim. 27 (1989), 658-672. · Zbl 0696.93033 · doi:10.1137/0327035
[4] J. W. Grizzle: Controlled invariance for discrete-time nonlinear systems with an application to the disturbance decoupling problem. IEEE Trans. Automat. Control AC-30 (1985), 868-874.
[5] J. W. Grizzle: A linear algebraic framework for the analysis of discrete-time nonlinear systems. SIAM J. Control Optim. 31 (1993), 1026-1044. · Zbl 0785.93036 · doi:10.1137/0331046
[6] R. M. Hirschorn: Invertibility of multivariable nonlinear control systems. IEEE Trans. Automat. Control AC-24 (1979), 1-19. · Zbl 0427.93020 · doi:10.1109/TAC.1979.1102181
[7] R. M. Hirschorn: \((A,B)\)-invariant distributions and disturbance decoupling of nonlinear systems. SIAM J. Control Optim. 19 (1981), 1-19. · Zbl 0474.93036 · doi:10.1137/0319001
[8] H. J. C. Huijberts: Dynamic Feedback in Nonlinear Synthesis Problems. P\?.D. Thesis, University of Twente, Enschede 1991. · Zbl 0801.93022
[9] H. J. C. Huijberts H. Nijmeijer: Strong dynamic input-output decoupling: From linearity to nonlinearity. Proceedings of the IFAC Symposium on Nonlinear Control Systems Design, Bordeaux 1992.
[10] H. J. C. Huijberts H. Nijmeijer L. L. M. van der Wegen: Dynamic disturbance decoupling for nonlinear systems. SIAM J. Control Optim. 30 (1992), 336-349. · Zbl 0743.93051 · doi:10.1137/0330021
[11] H. J. C. Huijberts H. Nijmeijer L. L. M. van der Wegen: Minimality of dynamic input-output decoupling for nonlinear systems. Systems Control Lett. 18 (1992), 435-443. · Zbl 0763.93029 · doi:10.1016/0167-6911(92)90047-V
[12] H. J. C. Huijberts H. Nijmeijer L. L. M. van der Wegen: Dynamic disturbance decoupling for nonlinear systems: The nonsquare and noninvertible case. Analysis of Controlled Dynamical Systems (B. Bonnard, B. Bride, J.P. Gauthier and I. Kupka, Birkhäuser, Boston 1991, pp. 243-252. · Zbl 0789.93067
[13] A. Ilchmann: Contributions to Time-Varying Linear Control Systems. Verlag an der Lottbek, Ammersbek 1989. · Zbl 0693.93048
[14] A. Ilchmann: Time-varying linear control systems: A geometric approach. IMA J. Math. Control Inform. 6 (1989), 411-440. · Zbl 0696.93017 · doi:10.1093/imamci/6.4.411
[15] A. Isidori A. J. Krener C. Gori-Giorgi S. Monaco: Nonlinear decoupling via feedback: a differential geometric approach. IEEE Trans. Automat. Control AC-26 (1981), 331-345. · Zbl 0481.93037 · doi:10.1109/TAC.1981.1102604
[16] T. Kaczorek: Linear Control Systems II. Research Studies Press Ltd., Taunton 1993. · Zbl 0784.93003
[17] Ü. Kotta: Dynamic disturbance decoupling for discrete-time nonlinear systems: the nonsquare and non-invertible case. Proc. Estonian Acad. Sci. Phys. Math. 41 (1991), 14-22. · Zbl 0800.93748
[18] Ü. Kotta H. Nijmeijer: Dynamic Disturbance Decoupling for Discrete-Time Nonlinear Systems. Memorandum No. 913, University of Twente, Enschede 1990.
[19] W. C. A. Maas H. Nijmeijer: Dynamic path controllability in economic models: from linearity to nonlinearity. J. Econom. Dynamics Control 18 (1994), 781-805. · Zbl 0803.90032 · doi:10.1016/0165-1889(94)90031-0
[20] S. Monaco D. Normand-Cyrot: Invariant distributions for discrete time nonlinear systems. Systems Control Lett. 5 (1984), 191-196. · Zbl 0556.93031 · doi:10.1016/S0167-6911(84)80102-4
[21] H. Nijmeijer: Local (dynamic) input-output decoupling of discrete time nonlinear systems. IMA J. Math. Control Inform. 4 (1987), 237-250. · Zbl 0631.93033 · doi:10.1093/imamci/4.3.237
[22] H. Nijmeijer A. van der Schaft: Nonlinear Dynamical Control Systems. Springer Verlag, New York 1990. · Zbl 0701.93001
[23] W. Respondek: Disturbance decoupling via dynamic feedback. Analysis of Controlled Dynamical Systems (B. Bonnard, B. Bride, J. P. Gauthier and I. Kupka, Birkhäuser, Boston 1991, pp. 347-357. · Zbl 0801.93023
[24] L. M. Silverman: Inversion of multivariable linear systems. IEEE Trans. Automat. Contr. AC-14 (1969), 270-276.
[25] S. N. Singh: Generalised decoupled-control synthesis for nonlinear systems. IEE Proceedings 128(1981), 157-161.
[26] W. M. Wonham A. S. Morse: Decoupling and pole assignment in linear multivariable systems: A geometric approach. SIAM J. Control Optim. 8 (1970), 1-18. · Zbl 0206.16404 · doi:10.1137/0308001
[27] W. M. Wonham: Linear Multivariable Control. Springer Verlag, New York 1985. · Zbl 0609.93001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.