×

Regional enlarged observability of fractional differential equations with Riemann-Liouville time derivatives. (English) Zbl 1432.93041

Summary: We introduce the concept of regional enlarged observability for fractional evolution differential equations involving Riemann-Liouville derivatives. The Hilbert Uniqueness Method (HUM) is used to reconstruct the initial state between two prescribed functions, in an interested subregion of the whole domain, without the knowledge of the state.

MSC:

93B07 Observability
93C20 Control/observation systems governed by partial differential equations
35R11 Fractional partial differential equations
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Leibniz, G.W.; ; Mathematische Schriften. Bd. V: Die mathematischen Abhandlungen: Hildesheim, Germany 1962; . · Zbl 1372.01097
[2] Samko, S.G.; Kilbas, A.A.; Marichev, O.I.; ; Fractional Integrals and Derivatives: Yverdon, Switzerland 1993; . · Zbl 0818.26003
[3] Machado, J.A.T.; Kiryakova, V.; The chronicles of fractional calculus; Fract. Calc. Appl. Anal.: 2017; Volume 20 ,307-336. · Zbl 1364.26002
[4] Heymans, N.; Podlubny, I.; Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives; Rheol. Acta: 2006; Volume 45 ,765-771.
[5] Povstenko, Y.; ; Linear Fractional Diffusion-wave Equation for Scientists and Engineers: Cham, Switzerland 2015; . · Zbl 1331.35004
[6] Tenreiro Machado, J.A.; Mainardi, F.; Kiryakova, V.; Atanacković, T.; Fractional calculus: D’où venons-nous? Que sommes-nous? Où allons-nous?; Fract. Calc. Appl. Anal.: 2016; Volume 19 ,1074-1104. · Zbl 1351.26017
[7] Dzieliński, A.; Sierociuk, D.; Fractional order model of beam heating process and its experimental verification; New Trends in Nanotechnology and Fractional Calculus Applications: New York, NY, USA 2010; ,287-294. · Zbl 1207.80006
[8] Sierociuk, D.; Dzieliński, A.; Sarwas, G.; Petras, I.; Podlubny, I.; Skovranek, T.; Modelling heat transfer in heterogeneous media using fractional calculus; Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.: 2013; Volume 371 ,20120146. · Zbl 1382.80004
[9] Dzieliński, A.; Sarwas, G.; Sierociuk, D.; Time domain validation of ultracapacitor fractional order model; Proceedings of the 49th IEEE Conference on Decision and Control (CDC): ; ,3730-3735. · Zbl 1268.34091
[10] Dzieliński, A.; Sierociuk, D.; Ultracapacitor modelling and control using discrete fractional order state-space model; Acta Montan. Slovaca: 2008; Volume 13 ,136-145. · Zbl 1229.93143
[11] Dzieliński, A.; Sierociuk, D.; Sarwas, G.; Some applications of fractional order calculus; Bull. Pol. Acad. Sci. Tech. Sci.: 2010; Volume 58 ,583-592. · Zbl 1220.80006
[12] ; Applications of Fractional Calculus in Physics: River Edge, NJ, USA 2000; . · Zbl 0998.26002
[13] Magin, R.L.; ; Fractional Calculus in Bioengineering: Danbury, CT, USA 2006; .
[14] Tavares, D.; Almeida, R.; Torres, D.F.M.; Fractional Herglotz variational problems of variable order; Discrete Contin. Dyn. Syst. Ser. S: 2018; Volume 11 ,143-154. · Zbl 1379.49016
[15] Debbouche, A.; Torres, D.F.M.; Sobolev type fractional dynamic equations and optimal multi-integral controls with fractional nonlocal conditions; Fract. Calc. Appl. Anal.: 2015; Volume 18 ,95-121. · Zbl 1321.49007
[16] Mozyrska, D.; Torres, D.F.M.; Minimal modified energy control for fractional linear control systems with the Caputo derivative; Carpathian J. Math.: 2010; Volume 26 ,210-221. · Zbl 1224.49048
[17] Xue, R.; Observability for fractional diffusion equations by interior control; Fract. Calc. Appl. Anal.: 2017; Volume 20 ,537-552. · Zbl 1364.93076
[18] Axtell, M.; Bise, M.E.; Fractional calculus application in control systems; Proceedings of the IEEE Conference on Aerospace and Electronics: ; Volume Volume 2 ,563-566.
[19] Baleanu, D.; Golmankhaneh, A.K.; Golmankhaneh, A.K.; On electromagnetic field in fractional space; Nonlinear Anal. Real World Appl.: 2010; Volume 11 ,288-292. · Zbl 1196.35224
[20] Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J.; ; Theory and Applications of Fractional Differential Equations: Amsterdam, The Netherlands 2006; Volume Volume 204 . · Zbl 1092.45003
[21] Liu, Z.; Han, J.; Integral boundary value problems for fractional order integro-differential equations; Dyn. Syst. Appl.: 2012; Volume 21 ,535-547. · Zbl 1278.45010
[22] Liu, Z.; Sun, J.; Nonlinear boundary value problems of fractional functional integro-differential equations; Comput. Math. Appl.: 2012; Volume 64 ,3228-3234. · Zbl 1268.34021
[23] Oustaloup, A.; From fractality to non integer derivation: A fundamental idea for a new process control strategy; Analysis and Optimization of Systems: Berlin/Heidelberg, Germany 1988; ,53-64.
[24] Podlubny, I.; Fractional differential equations; Mathematics in Science and Engineering: San Diego, CA, USA 1999; . · Zbl 0924.34008
[25] Li, C.; Zeng, F.; ; Numerical Methods for Fractional Calculus: Boca Raton, FL, USA 2015; . · Zbl 1326.65033
[26] Li, C.; Yi, Q.; Kurths, J.; Fractional Convection; J. Comput. Nonlinear Dyn.: 2017; Volume 13 ,011004.
[27] Li, C.; Chen, A.; Numerical methods for fractional partial differential equations; Int. J. Comput. Math.: 2018; Volume 95 ,1048-1099. · Zbl 1513.65291
[28] Abbas, S.; Benchohra, M.; N’Guérékata, G.M.; Topics in fractional differential equations; Developments in Mathematics: New York, NY, USA 2012; Volume Volume 27 . · Zbl 1273.35001
[29] Agarwal, R.P.; Baleanu, D.; Nieto, J.J.; Torres, D.F.M.; Zhou, Y.; A survey on fuzzy fractional differential and optimal control nonlocal evolution equations; J. Comput. Appl. Math.: 2018; Volume 339 ,3-29. · Zbl 1388.34005
[30] Zhang, X.; Zhong, Q.; Triple positive solutions for nonlocal fractional differential equations with singularities both on time and space variables; Appl. Math. Lett.: 2018; Volume 80 ,12-19. · Zbl 1391.34021
[31] Amouroux, M.; El Jaï, A.; Zerrik, E.; Regional observability of distributed systems; Int. J. Syst. Sci.: 1994; Volume 25 ,301-313. · Zbl 0812.93015
[32] Dolecki, S.; Russell, D.L.; A general theory of observation and control; SIAM J. Control Optim.: 1977; Volume 15 ,185-220. · Zbl 0353.93012
[33] El Jaï, A.; Pritchard, A.J.; Capteurs et actionneurs dans l’analyse des systèmes distribués; Recherches en Mathématiques Appliquées [Research in Applied Mathematics]: Paris, France 1986; Volume Volume 3 ,204. · Zbl 0627.93001
[34] El Jaï, A.; Simon, M.C.; Zerrik, E.; Regional observability and sensor structures; Sens. Actuators A Phys.: 1993; Volume 39 ,95-102.
[35] Zerrik, E.H.; Bourray, H.; Gradient observability for diffusion systems; Int. J. Appl. Math. Comput. Sci.: 2003; Volume 13 ,139-150. · Zbl 1066.93008
[36] Ge, F.; Chen, Y.; Kou, C.; Regional gradient controllability of sub-diffusion processes; J. Math. Anal. Appl.: 2016; Volume 440 ,865-884. · Zbl 1339.93025
[37] Debbouche, A.; Torres, D.F.M.; Approximate controllability of fractional nonlocal delay semilinear systems in Hilbert spaces; Int. J. Control: 2013; Volume 86 ,1577-1585. · Zbl 1278.93049
[38] Debbouche, A.; Torres, D.F.M.; Approximate controllability of fractional delay dynamic inclusions with nonlocal control conditions; Appl. Math. Comput.: 2014; Volume 243 ,161-175. · Zbl 1335.34094
[39] Karite, T.; Boutoulout, A.; Torres, D.F.M.; Enlarged controllability of Riemann-Liouville fractional differential equations; J. Comput. Nonlinear Dyn.: 2018; Volume 13 ,090907. · Zbl 1442.35219
[40] Ge, F.; Chen, Y.; Kou, C.; On the regional gradient observability of time fractional diffusion processes; Autom. J. IFAC: 2016; Volume 74 ,1-9. · Zbl 1348.93054
[41] Ge, F.; Chen, Y.; Kou, C.; ; Regional Analysis of Time-Fractional Diffusion Processes: Cham, Switzerland 2018; . · Zbl 1382.93002
[42] Zheng, G.; Ali, M.M.; Observability estimate for the fractional order parabolic equations on measurable sets; Abstr. Appl. Anal.: 2014; ,361904. · Zbl 1406.93068
[43] Lions, J.L.; Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués. Tome 1; Recherches en Mathématiques Appliquées [Research in Applied Mathematics]: Paris, France 1988; . · Zbl 0653.93002
[44] Lions, J.L.; Sur la contrôlabilité exacte élargie; Partial Differential Equations and the Calculus of Variations: Boston, MA, USA 1989; Volume Volume 2 ,703-727. · Zbl 0825.49050
[45] Almeida, R.; Pooseh, S.; Torres, D.F.M.; ; Computational Methods in the Fractional Calculus of Variations: London, UK 2015; . · Zbl 1322.49001
[46] Liu, Z.; Li, X.; Approximate controllability of fractional evolution systems with Riemann-Liouville fractional derivatives; SIAM J. Control Optim.: 2015; Volume 53 ,1920-1933. · Zbl 1326.34019
[47] Mainardi, F.; Paradisi, P.; Gorenflo, R.; Probability distributions generated by fractional diffusion equations; arXiv: 2007; . · Zbl 0986.82037
[48] Klimek, M.; ; On Solutions of Linear Fractional Differential Equations of a Variational Type: Czestochowa, Poland 2009; .
[49] Pritchard, A.J.; Wirth, A.; Unbounded control and observation systems and their duality; SIAM J. Control Optim.: 1978; Volume 16 ,535-545. · Zbl 0419.93011
[50] Salamon, D.; Infinite-dimensional linear systems with unbounded control and observation: A functional analytic approach; Trans. Am. Math. Soc.: 1987; Volume 300 ,383-431. · Zbl 0623.93040
[51] Weiss, G.; Admissible observation operators for linear semigroups; Israel J. Math.: 1989; Volume 65 ,17-43. · Zbl 0696.47040
[52] Curtain, R.F.; Zwart, H.; ; An Introduction to Infinite-Dimensional Linear Systems Theory: New York, NY, USA 1995; Volume Volume 21 . · Zbl 0839.93001
[53] Zouiten, H.; Boutoulout, A.; El Alaoui, F.Z.; On the regional enlarged observability for linear parabolic systems; J. Math. Syst. Sci.: 2017; Volume 7 ,79-87.
[54] Gorenflo, R.; Kilbas, A.A.; Mainardi, F.; Rogosin, S.V.; ; Mittag-Leffler Functions, Related Topics and Applications: Heidelberg, Germany 2014; . · Zbl 1309.33001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.