×

Using genetic algorithm to improve consistency and retain authenticity in the analytic hierarchy process. (English) Zbl 07319770

Summary: The quality of decision using the analytic hierarchy process (AHP) depends upon the consistency of the pairwise comparison matrices (PCM) in the AHP hierarchy. While several studies describe methods to improve consistency, the related issue of retaining authenticity of the judgements has received far less attention. In this paper, a multi-objective genetic algorithm is presented for the purpose of reducing the inconsistency of a PCM while ensuring a high degree of authenticity with respect to the original input. A number of Pareto-optimal solutions are generated as a result of the optimization. Heuristics for choosing one of these PCMs based on a trade-off between consistency and authenticity is also presented. To demonstrate the effectiveness of the proposed method two inconsistent PCMs are selected for rectification. Rectified PCMs from the proposed method as well as from other established methods are compared. It is seen that the proposed method results in consistency that compares favorably with existing methods while retaining a greater degree of authenticity. Though the proposed method is slow and computationally intensive, we believe that this is a cost worth incurring in the interest of reliability and authenticity of judgements.

MSC:

90Bxx Operations research and management science

Software:

SPEA2; DEAP
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Aczel, J.; Saaty, TL, Procedures for synthesizing ratio judgements, J. Math. Psychol., 27, 93-182 (1983) · Zbl 0522.92028 · doi:10.1016/0022-2496(83)90028-7
[2] Miller, GA, The magical number seven plus or minus two: some limits on our capacity for processing information, Psychol. Rev., 63, 81-97 (1956) · doi:10.1037/h0043158
[3] Saaty, RW, The analytic hierarchy process—what it is and how it is used, Math. Model., 9, 3-5, 161-176 (1987) · Zbl 0625.90002 · doi:10.1016/0270-0255(87)90473-8
[4] Ho, W.; Ma, X., The state-of-the-art integrations and applications of the analytic hierarchy process, Eur. J. Oper. Res. (2017) · Zbl 1403.90414 · doi:10.1016/j.ejor.2017.09.007
[5] Sipahi, S.; Timor, M., The analytic hierarchy process and analytic network process: an overview of applications, Manag. Decis., 48, 775-808 (2010) · doi:10.1108/00251741011043920
[6] Vaidya, OS; Kumar, S., Analytic hierarchy process: an overview of applications, Eur. J. Oper. Res., 169, 1-29 (2006) · Zbl 1077.90542 · doi:10.1016/j.ejor.2004.04.028
[7] Alonso, J.A., Lamata, M.T.: Estimation of the random index in the analytic hierarchy process. In: Proceedings of Information Processing and Management of Uncertainty in Knowledge-Based Systems pp. 317-322 (2004)
[8] Han, S.H.: A practical approach to decrease the consistency index in AHP. In 2014 Joint 7th International Conference on Soft Computing and Intelligent Systems (SCIS) and 15th International Symposium on Advanced Intelligent Systems (ISIS). IEEE (2014). 10.1109/scis-isis.2014.7044748
[9] Lane, EF; Verdini, WA, A consistency test for AHP decision makers, Decis. Sci., 20, 575-590 (1989) · doi:10.1111/j.1540-5915.1989.tb01568.x
[10] Murphy, CK, Limits of the analytical hierarchy process from its consistency index, Eur. J. Oper. Res., 65, 138-139 (1993) · Zbl 0775.90009 · doi:10.1016/0377-2217(93)90148-G
[11] Benitez, J.; Delgado-Galvan, X.; Izquierdo, J.; Perez-García, R., Improving consistency in AHP decision-making processes, Appl. Math. Comput., 219, 2432-2441 (2012) · Zbl 1308.68119
[12] Ergu, D.; Kou, G.; Peng, Y.; Shi, Y., A simple method to improve the consistency ratio of the pair-wise comparison matrix in ANP, Eur. J. Oper. Res., 213, 1, 246-259 (2011) · Zbl 1237.90220 · doi:10.1016/j.ejor.2011.03.014
[13] Harker, P., Derivatives of the perron root of a positive reciprocal matrix: With applications to the analytic hierarchy process, Appl. Math. Comput., 22, 217-232 (1987) · Zbl 0619.15017
[14] Cao, D.; Leung, LC; Law, JS, Modifying inconsistent comparison matrix in analytic hierarchy process: a heuristic approach, Decis. Support Syst. (2008) · doi:10.1016/j.dss.2007.11.002
[15] Zenshui, X.; Cuiping, W., A consistency improving method in the analytic hierarchy process, Eur. J. Oper. Res., 116, 443-449 (1999) · Zbl 1009.90513 · doi:10.1016/S0377-2217(98)00109-X
[16] da Serra Costa, JF, A genetic algorithm to obtain consistency in analytic hierarchy process, Braz. J. Oper. Prod. Manag. (2011) · doi:10.4322/bjopm.2011.003
[17] Girsang, A.S., Sfenrianto, Suroso, J.S.: Multi-objective using NSGA-2 for enhancing the consistency-matrix. In: Pasila, F., Tanoto, Y., Lim, R., Santoso, M., Pah, N.D. (eds.) Lecture Notes in Electrical Engineering, pp. 123-129. Springer (2015)
[18] Sun, X., Liu, Q., Zhang, L.: Consistency Modification of Judgment Matrix Based on Genetic Algorithm in Analytic Hierarchy Process. In: Third Pacific-Asia Conference on Circuits, Communications and System (PACCS), pp. 1-4 (2011). 10.1109/PACCS.2011.5990268
[19] Wang, C.H., , Liu, S.H., Pang, C.T.: Using genetic algorithm to improve the consistency of fuzzy analytic hierarchy process. In: IEEE, in the 6th International Conference on Soft Computing and Intelligent Systems, and the 13th International Symposium on Advanced Intelligence Systems, pp. 977-982, (2012). 10.1109/SCIS-ISIS.2012.6505096
[20] Girsang, A.S., Tsai, C.W., Yang, C.S.: Ant Colony Optimization for Reducing the Consistency Ratio in Comparison Matrix. In: International Conference on Advances in Engineering and Technology (ICAET’2014), 2014. 10.15242/IIE.E0314166
[21] Girsang, AS; Tsai, CW; Yang, CS, Multi-objective particle swarm optimization for repairing inconsistent comparison matrices, Int. J. Comput. Appl. (2014) · Zbl 1390.90584 · doi:10.1155/2015/467274
[22] Venter, G., Sobieski, J.: Particle swarm optimization. In: Structures, Structural Dynamics, and Materials Conference, Denver, CO., pp. 1942-1945 (2002)
[23] Amine, K., Multiobjective simulated annealing: principles and algorithm variants, Adv. Oper. Res. (2019) · doi:10.1155/2019/8134674
[24] Antunes, CH; Lima, P.; Oliveira, E.; Pires, DF, A multi-objective simulated annealing approach to reactive power compensation, Eng. Optim., 43, 1063-1077 (2011) · doi:10.1080/0305215X.2010.535817
[25] Bandyopadhyay, S.; Saha, S.; Maulik, U.; Deb, K., A simulated annealing-based multiobjective optimization algorithm: AMOSA, IEEE Trans. Evol. Comput., 12, 269-283 (2008) · doi:10.1109/TEVC.2007.900837
[26] Czyżak, P.; Jazkiewicz, A., Pareto simulated annealing: a metaheuristic technique for multiple-objective combinatorial optimization, J. Multi-Criteria Decis. Anal., 7, 39-47 (1998) · Zbl 0904.90146
[27] Tekinalp, O.; Karsli, G., A new multiobjective simulated annealing algorithm, J. Glob. Optim., 39, 49-77 (2007) · Zbl 1152.90601 · doi:10.1007/s10898-006-9120-2
[28] Yannibelli, V.; Amandi, A., Hybridizing a multi-objective simulated annealing algorithm with a multi-objective evolutionary algorithm to solve a multi-objective project scheduling problem, Expert Syst. Appl., 40, 2421-2434 (2013) · doi:10.1016/j.eswa.2012.10.058
[29] Abubaker, A.; Baharum, A.; Alrefaei, M., Multi-objective particle swarm optimization and simulated annealing in practice, Appl. Math. Sci., 10, 2087-2103 (2016) · doi:10.18576/amis/100611
[30] Hassan, R., Cohanim, B., de Wek, O., Venter, G.: A comparison of particle swarm optimization and the genetic algorithm. In: American Institute of Aeronautics and Astronautics (2004)
[31] Jia, F., Lichti, D.: A comparison of simulated annealing, genetic algorithm and particle swarm optimization in optimal first-order design of indoor TLS networks. In: ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences (2017)
[32] Chiandussi, G.; Codegone, M.; Ferrero, S.; Varesio, FE, Comparison of multi-objective optimization methodologies for engineering applications, Comput. Math. Appl., 2, 912-942 (2012) · Zbl 1247.74052 · doi:10.1016/j.camwa.2011.11.057
[33] Monsef, H.; Naghashzadegan, M.; Jamali, A.; Farmani, R., Comparison of evolutionary multi objective optimization algorithms in optimum design of water distribution network, Ain Shams Eng. J., 10, 103-111 (2019) · doi:10.1016/j.asej.2018.04.003
[34] Song, M.; Chen, D., A comparison of three heuristic optimization algorithms for solving the multi-objective land allocation (MOLA) problem, Ann. GIS (2018) · doi:10.1080/19475683.2018.1424736
[35] Goldberg, DE, Genetic Algorithms in Search. Optimization and Machine Learning (1989), Boston: Addison-Wesley, Boston · Zbl 0721.68056
[36] Haupt, RL; Haupt, SE, Practical Genetic Algorithms (2004), Hoboken: Wiley-Interscience, Hoboken · Zbl 1072.68089
[37] Holland, JH, Adaptation in Natural and Artificial Systems—An Introductory Analysis with Applications to Biology. Control and Artificial Intelligence (1992), Cambridge: Bradford Books, The MIT Press, Cambridge
[38] Solimanpur, M., Optimum portfolio selection using a hybrid genetic algorithm and analytic hierarchy process, Stud. Econ. Finance, 32, 3, 379-394 (2015) · doi:10.1108/SEF-08-2012-0085
[39] Sbeity, MDI; Kobeissi, H., Combining the analytic hierarchy process and the genetic algorithm to solve the timetable problem, Int. J. Softw. Eng. Appl., 5, 4, 39-50 (2014)
[40] Aiello, G.; La Scalia, G.; Enea, M., A non dominated ranking multi objective genetic algortithm and electre method for unequal area facility layout problems, Expert Syst. Appl., 40, 12, 4812-4819 (2013) · doi:10.1016/j.eswa.2013.02.026
[41] Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In: Parallel Problem Solving from Nature VI Conference, pp. 849-858 (2000)
[42] Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength pareto evolutionary algorithm for multi-objective optimization. In: Conference Proceedings of the EUROGEN ’2001: Evolutionary Methods for Design, Optimization and Control with Applications to Industrial Problems (2002)
[43] King, RTFA; Deb, K.; Rughooputh, HCS, Comparison of NSGA-II and SPEA2 on the multiobjective environmental/economic dispatch, Univ. Maurit. Res. J., 16, 485-511 (2010)
[44] Kunkle, D.: A Summary and Comparison of MOEA Algorithms. unpublished (2005)
[45] Fortin, FA; De Rainville, FM; Gardner, MA; Parizeau, M.; Gagné, C., DEAP: evolutionary algorithms made easy, J. Mach. Learn. Res., 13, 2171-2175 (2012)
[46] Thomas, LS, On the measurement of intangibles. A principal eigenvector approach to relative measurement derived from paired comparisons, Not. AMS, 60, 2, 192-208 (2013) · Zbl 1290.91050
[47] Kou, G.; Ergu, D.; Shang, J., Enhancing data consistency in decision matrix: adapting hadamard model to mitigate judgment contradiction, Eur. J. Oper. Res., 236, 261-271 (2013) · Zbl 1338.91057 · doi:10.1016/j.ejor.2013.11.035
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.