×

Triangular matrix representations. (English) Zbl 0964.16031

A ring \(R\) is said to have a GTMR (reviewer’s abbreviation for “generalised triangular matrix representation”) if there is a positive integer \(n\) such that \(R\) is isomorphic to the ring of all \(n\times n\) upper triangular matrices with \(i\)-th diagonal entry in some ring \(R_i\) and with above-diagonal \((i,j)\)-entry in an \(R_i\)-\(R_j\)-bimodule \(R_{ij}\). This is equivalent to \(R\) having a set of \(n\) non-zero idempotents \(b_1,\dots,b_n\) whose sum is \(1\) and such that \(b_iRb_j=0\) whenever \(i>j\). Such an ordered set \((b_1,\dots,b_n)\) is called a set of left triangulating idempotents for \(R\). Note that in these circumstances \(b_1R\) and \(Rb_n\) are two-sided ideals of \(R\). An idempotent element \(e\) of \(R\) is said to be left (resp. right) semicentral if \(eR\) (resp. \(Re\)) is a two-sided ideal of \(R\). Thus the existence of a GTMR for \(R\) is closely related to the presence of semicentral idempotents in \(R\) and certain of its subrings. We say that \(R\) has a complete GTMR if \(R\) has a GTMR in which each diagonal ring \(R_i\) is semicentral reduced (i.e., has no non-trivial semicentral idempotents). Thus the diagonal rings in a complete GTMR cannot be properly represented as triangular matrix rings.
This paper carries out a detailed and systematic study of GTMR’s for a ring \(R\). For instance if \(R\) has a complete GTMR in terms of \(n\times n\) triangular matrices then \(n\) is uniquely determined by \(R\) as also are, in an appropriate sense, the diagonal rings in the representation. If \(R\) has a complete GTMR then \(R\) has finite left global dimension if and only if each diagonal ring does, and bounds are given for these dimensions. Many classes of rings (e.g., rings with no infinite sets of orthogonal idempotents) have complete GTMR’s and their study can be reduced in this way to that of semicentral reduced rings in the same class. Quasi-Baer rings are well-suited to this approach, because a ring \(R\) is, by definition, quasi-Baer if the right annihilator of each two-sided ideal of \(R\) is of the form \(eR\) for some (necessarily left semicentral) idempotent element \(e\) of \(R\). In particular a semicentral reduced quasi-Baer ring is prime. This makes it possible to give precise structural information about those quasi-Baer rings which have a complete GTMR, and then numerous known results follow as special cases including Gordon and Small’s main theorem for piecewise domains.

MSC:

16S50 Endomorphism rings; matrix rings
16E10 Homological dimension in associative algebras
16D70 Structure and classification for modules, bimodules and ideals (except as in 16Gxx), direct sum decomposition and cancellation in associative algebras)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Anderson, F. W.; Fuller, K. R., Rings and Categories of Modules (1992), Springer-Verlag: Springer-Verlag Heidelberg/New York · Zbl 0242.16025
[2] Auslander, M., On the dimension of modules and algebras, III, Nagoya Math. J., 9, 67-77 (1955) · Zbl 0067.27103
[3] Azumaya, G., On maximal central algebras, Nagoya Math. J., 2, 119-150 (1951) · Zbl 0045.01103
[4] Birkenmeier, G. F.; Heatherley, H. E.; Lee, E. K., Completely prime ideals and associated radicals, (Jain, S. K.; Rizvi, S. Tariq, Ring Theory (1993), World Scientific: World Scientific Singapore), 102-129 · Zbl 0853.16022
[6] Birkenmeier, G. F., Indecomposable decompositions and the minimal direct summand containing the nilpotents, Proc. Amer. Math. Soc., 73, 11-14 (1979) · Zbl 0369.16025
[7] Birkenmeier, G. F., Baer rings and quasi-continuous rings have a MDSN, Pacific J. Math., 97, 283-292 (1981) · Zbl 0432.16010
[8] Birkenmeier, G. F., Idempotents and completely semiprime ideals, Comm. Algebra, 11, 567-580 (1983) · Zbl 0505.16004
[9] Barthwal, S.; Jain, S. K.; Kanwar, P.; Lopez-Permouth, S. R., Nonsingular semiperfect CS-rings, J. Algebra, 203, 361-373 (1998) · Zbl 0920.16003
[10] Chase, S. U., A generalization of the ring of triangular matrices, Nagoya Math. J., 18, 13-25 (1961) · Zbl 0113.02901
[11] Chatters, A. W.; Hajarnavis, C. R., Rings in which every complement right ideal is a direct summand, Quart. J. Math. Oxford Ser. (2), 28, 61-81 (1977) · Zbl 0342.16023
[12] Chatters, A. W.; Hajarnavis, C. R., Rings with Chain Conditions (1980), Pitman: Pitman Boston · Zbl 0446.16001
[13] Chatters, A. W.; Khuri, S. M., Endomorphism rings of modules over non-singular CS rings, J. London Math. Soc. (2), 21, 434-444 (1980) · Zbl 0432.16017
[14] Clark, W. E., Twisted matrix units semigroup algebras, Duke Math. J., 34, 417-423 (1967) · Zbl 0204.04502
[15] Chari, V.; Pressley, A., A Guide to Quantum Groups (1994), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 0839.17009
[16] Faith, C., Semiperfect Prüfer rings and FPF rings, Israel J. Math., 26, 166-177 (1977) · Zbl 0345.16005
[17] Faith, C., Injective quotient rings of commutative rings, Module Theory. Module Theory, Lecture Notes in Math., 700 (1979), Springer-Verlag: Springer-Verlag Heidelberg/New York, p. 151-203 · Zbl 0413.13003
[18] Fields, K. L., On the global dimension of residue rings, Pacific J. Math., 32, 345-349 (1970) · Zbl 0199.35702
[19] Gordon, R.; Robson, J. C., Krull dimension, Mem. Amer. Math. Soc., 133 (1973) · Zbl 0269.16017
[20] Gordon, R.; Small, L. W., Piecewise domains, J. Algebra, 23, 553-564 (1972) · Zbl 0244.16008
[21] Harada, M., Hereditary semi-primary rings and triangular matrix rings, Nagoya Math. J., 27, 463-484 (1966) · Zbl 0178.36504
[22] Hudson, T. D.; Katsoulis, E. G.; Larson, D. R., Extreme points in triangular UHF algebras, Trans. Amer. Math. Soc., 349, 3391-3400 (1997) · Zbl 0883.47035
[23] Jacobson, N., Structure of Rings. Structure of Rings, Amer. Math. Soc. Colloq. Publ., 37 (1964), Amer. Math. Soc: Amer. Math. Soc Providence
[24] Kaplansky, I., Rings of Operators (1968), Benjamin: Benjamin New York · Zbl 0212.39101
[25] Krause, G., On the Krull-dimension of left Noetherian left Matlis-rings, Math. Z., 118, 207-214 (1970) · Zbl 0194.06601
[26] Kelarev, A. V.; Van der Merwe, A. B.; van Wyk, L., The minimum number of idempotent generators of an upper triangular matrix algebra, J. Algebra, 205, 605-616 (1998) · Zbl 0913.16014
[27] Lam, T. Y., A First Course in Noncommutative Rings (1991), Springer-Verlag: Springer-Verlag Heidelberg/New York · Zbl 0728.16001
[28] Lam, T. Y., A lifting theorem, and rings with isomorphic matrix rings, (Chan, K. Y.; Liu, M. C., Five Decades as a Mathematician and Educator: On the 80th Birthday of Professor Y. C. Wong (1995), World Scientific: World Scientific Singapore), 169-186 · Zbl 0902.16026
[29] Lam, T. Y., Modules with isomorphic multiples and rings with isomorphic matrix rings—A survey. Modules with isomorphic multiples and rings with isomorphic matrix rings—A survey, PAM, 736 (1998), University of California at Berkeley · Zbl 0962.16002
[30] Lam, T. Y., Lectures on Modules and Rings (1999), Springer-Verlag: Springer-Verlag Heidelberg/New York · Zbl 0911.16001
[31] Lawrence, J., A singular primitive ring, Proc. Amer. Math. Soc., 45, 59-62 (1974) · Zbl 0301.16006
[32] Levy, L., Torsion-free and divisible modules over non-integral-domains, Canad. J. Math., 15, 132-151 (1963) · Zbl 0108.04001
[33] Li, M. S.; Zelmanowitz, J. M., Artinian rings with restricted primeness conditions, J. Algebra, 124, 139-148 (1989) · Zbl 0677.16009
[34] Michler, G. O., Structure of semi-perfect hereditary Noetherian rings, J. Algebra, 13, 327-344 (1969) · Zbl 0198.05803
[35] Moody, R. V.; Pianzola, A., Lie Algebras with Triangular Decompositions (1995), Wiley: Wiley New York · Zbl 0874.17026
[36] Nicholson, W. K., Semiregular modules and rings, Canad. J. Math., 28, 1105-1120 (1976) · Zbl 0317.16005
[37] Nǎstǎsescu, C.; van Oystaeyen, F., Dimensions of Ring Theory (1987), Reidel: Reidel Dordrecht/Boston · Zbl 0626.16001
[38] Paterson, A. L.T.; Smith, R. R., Higher-dimensional virtual diagonals and ideal cohomology for triangular algebras, Trans. Amer. Math. Soc., 349, 1919-1943 (1997) · Zbl 0873.47028
[39] Pollingher, A.; Zaks, A., On Baer and quasi-Baer rings, Duke Math. J., 37, 127-138 (1970) · Zbl 0219.16010
[40] Rowen, L., Ring Theory (1988), Academic Press: Academic Press Boston
[41] Small, L. W., Semihereditary rings, Bull. Amer. Math. Soc., 73, 656-658 (1967) · Zbl 0149.28102
[42] Smith, S. P., An example of a ring Morita-equivalent to the Weyl algebra \(A_1\), J. Algebra, 73, 552-555 (1981) · Zbl 0468.16002
[43] Stenström, B., Rings of Quotients (1975), Springer-Verlag: Springer-Verlag Heidelberg/New York · Zbl 0296.16001
[44] Smith, K. C.; van Wyk, L., An internal characterization of structural matrix rings, Comm. Algebra, 33, 5599-5622 (1994) · Zbl 0826.16026
[45] Wheeler, W. H., Model theory of strictly upper triangular matrix rings, J. Symbolic Logic, 45, 455-463 (1980) · Zbl 0471.03027
[46] Wisbauer, R., Foundations of Module and Ring Theory (1991), Gordon & Breach: Gordon & Breach Philadelphia
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.