×

zbMATH — the first resource for mathematics

Topological groups. (English) Zbl 0566.22003
Translation from Itogi Nauki Tekh., Ser. Algebra Topol. Geom. 20, 3–64 (Russian) (1982; Zbl 0518.22001).
MSC:
22A05 Structure of general topological groups
PDF BibTeX Cite
Full Text: DOI
References:
[1] S. I. Adyan, ”On certain torsion-free groups,” Izv. Akad. Nauk SSSR, Ser. Mat.,35, No. 3, 459–468 (1971). · Zbl 0259.20027
[2] N. A. Akmalov, ”On topologies in the tensor product of Abelian groups,” Dokl. Akad. Nauk UzSSR, No. 1, 3–6 (1980). · Zbl 0496.22001
[3] A. V. Alekseevskii, ”On maximal finite subgroups of Lie groups,” Funkts. Anal. Prilozhen.,9, No. 3, 79–80 (1975).
[4] A. V. Alekseevskii, ”The structure of maximal finite primitive subgroups of Lie groups,” Usp. Mat. Nauk,30, No. 5, 197–198 (1975).
[5] I. V. Andozhskii, ”On the subgroups of Demushkin’s group,” Mat. Zametki,4, No. 3, 349–354 (1968).
[6] A. V. Arkhangel’skii, ”Cardinal invariants of topological groups. Imbeddings and condensations,” Dokl. Akad. Nauk SSSR,247, No. 4, 779–782 (1979).
[7] A. V. Arkhangel’skii, ”On invariants of character and weight type,” Tr. Mosk. Mat. Obshch.,38, 3–27 (1979).
[8] A. V. Arkhangel’skii, ”On mappings connected with topological groups,” Dokl. Akad. Nauk SSSR,181, No. 6, 1303–1306 (1968).
[9] V. K. Bel’nov, ”Certain theorems on the metrization of Abelian groups,” Mat. Sb.,94, No. 3, 339–357 (1974).
[10] V. K. Bel’nov, ”Certain theorems on metrizable Abelian groups,” Tr. Mosk. Mat. Obshch.,36, 131–153 (1978).
[11] V. K. Bel’nov, ”Certain theorems on free Abelian metrizable groups,” Sib. Mat. Zh.,13, No. 6, 1213–1228 (1972).
[12] V. K. Bel’nov, ”Homogeneous spaces,” Dokl. Akad. Nauk SSSR,199, No. 2, 265–268 (1971).
[13] V. K. Bel’nov, ”On the metrization of Abelian groups,” Dokl. Akad. Nauk SSSR,211, No. 5, 1021–1023 (1973).
[14] V. K. Bel’nov, ”On the metrization of Abelian groups,” Fund. Math.,80, No. 2, 181–205 (1973).
[15] V. K. Bel’nov, ”On zero-dimensional topological groups,” Dokl. Akad. Nauk SSSR,226, No. 4, 749–752 (1976).
[16] V. K. Bel’nov, ”On free Abelian metrizable groups,” Dokl. Akad. Nauk SSSR,202, No. 4, 743–746 (1972). · Zbl 0352.60042
[17] V. K. Bel’nov, ”On strongly bounded Abelian topological groups,” Ukr. Mat. Zh.,27, No. 2, 205–210 (1975).
[18] V. K. Bel’nov, ”The dimension of topologically homogeneous spaces and free homogeneous spaces,” Dokl. Akad. Nauk SSSR,238, No. 4, 781–784 (1978).
[19] V. K. Bel’nov, ”Retracts in various classes of topological Abelian groups,” Vestn. Mosk. Univ., Ser. Mat. Mekh., No. 4, 74–80 (1978). · Zbl 0391.22007
[20] L. A. Bessonova and Yu. N. Mukhin, ”Minimal topological groups,” Mat. Zap. Ural’sk. Gos. Univ.,8, No. 3, 3–11 (1973).
[21] O. N. Bondarenko, ”Topological R-groups,” Mosk. Gos. Pedagog. Inst. Uch. Zap., No. 375, 5–8 (1971).
[22] N. Bourbaki, Eléments de Mathématiques, Intégration, Chapitres 6–8, Hermann, Paris (1959; 1963).
[23] N. Burbaki (Bourbaki), General Topology. Topological Groups. Numbers and Related Groups and Spaces [Russian translation], Nauka, Moscow (1969).
[24] N. Bourbaki, Eléments de Mathématiques, Théories Spectrales, Hermann, Paris (1967).
[25] M. S. Burgin, ”Subalgebras of free topological algebras,” in: All-Union Topology Conference, Tbilisi (1972), p. 24. · Zbl 0359.22001
[26] M. S. Burgin, ”Topological algebras with continuous systems of operations,” Dokl. Akad. Nauk SSSR,213, No. 3, 505–508 (1973). · Zbl 0293.08003
[27] V. A. Geiler and P. S. Kenderov, ”On the completeness of a quotient group,” Vestn. Mosk. Univ. Ser. I Mat. Mekh., No. 5, 32–33 (1971). · Zbl 0221.22001
[28] F. P. Greenleaf, Invariant Means on Topological Groups, Van Nostrand, New York (1969). · Zbl 0174.19001
[29] K. W. Gruenberg, ”Profinite groups,” in: Algebraic Number Theory, Thompson, Washington (1967), pp. 183–199. · Zbl 0178.02703
[30] N. Zh. Zhalilova, ”The class of all nontrivial topologizable groups and its fundamental subclasses,” Mosk. Gos. Zaochn. Pedagog. Inst., Moscow, 1979. (Manuscript deposited at VINITI, Dec. 18, 1979, No. 4300-79 Dep.)
[31] L. G. Zambakhidze, ”On the relations between dimensions of free bases of free topological groups,” Soobshch. Akad. Nauk GSSR,97, No. 3, 569–572 (1980). · Zbl 0452.54031
[32] M. I. Kabenyuk, ”Finite automorphism groups of topological groups,” Algebra Logika,13, No. 3, 291–299 (1974).
[33] M. I. Kabenyuk, ”Normal subgroups of locally compact groups,” Sib. Mat. Zh.,16, No. 5, 1005–1010 (1975).
[34] M. I. Kabenyuk, ”On the complementability of subgroups in compact groups,” Sib. Mat. Zh.,13, No. 4, 939–943 (1972).
[35] M. I. Kabenyuk and V. D. Mazurov, ”Cyclic automorphism groups of topological groups,” Algebra Logika,13, No. 1, 9–21 (1974).
[36] V. N. Kalyuzhnyi, ”On the existence of an exact left invariant metric on groups,” Vestn. Kharkov. Gos. Univ.,93, No. 38, 22–26 (1973).
[37] I. Kaplansky, Lie Algebras and Locally Compact Groups, University of Chicago Press (1971). · Zbl 0223.17001
[38] I. V. Karklin’sh, ”Inductive and protective limits of commutative topological groups,” Dokl. Akad. Nauk SSSR,173, No. 1, 34–36 (1967).
[39] I. V. Karklin’sh, ”Inductive limits of increasing sequences of commutative topological groups. I,” Litov. Mat. Sb. (Liet. Mat. Rinkinys),5, No. 1, 57–68 (1965).
[40] I. V. Karklin’sh, ”Inductive limits of sequences of commutative topological groups,” in: Proc. Fourth All-Union Topology Conference, Fan, Tashkent (1967), pp. 74–79.
[41] I. V. Karklin’sh, ”Certain questions in the theory of direct and inverse spectra of topological groups,” Mat. Issled.,3, No. 3, 79–90 (1968).
[42] I. V. Karklin’sh, ”The structure of bicompact and bounded sets in inductive limits of commutative topological groups,” Latviisk. Mat. Ezhegodnik,3, 141–148 (1968).
[43] I. V. Karklin’sh, ”The quotient group of a projective limit of topological groups,” Latviisk. Mat. Ezhegodnik,6, 91–105 (1969).
[44] P. Kenderov, ”On topological groups,” Dokl. Akad. Nauk SSSR,194, No. 4, 760–762 (1970).
[45] A. A. Kirillov, Elements of the Theory of Representations, Springer-Verlag, Berlin (1976). · Zbl 0342.22001
[46] L. N. Kozeratskaya and V. V. Ostapenko, ”Topological nilgroups of matrices,” Ukr. Mat. Zh.,32, No. 2, 175–180 (1980). · Zbl 0456.22007
[47] Yu. A. Komarov and I. V. Protasov, ”Compactness and discreteness in the lattice of the invariant subgroups of a topological group,” in: The Constructive Description of Groups with Prescribed Properties of Their Subgroups [in Russian], Kiev (1980), pp. 133–140.
[48] T. M. Koroleva, ”Topological groups with complemented infinite closed subgroups,” in: The Structure of Groups and the Properties of Their Subgroups [in Russian], Kiev (1978), pp. 121–130.
[49] B. A. Kramarev, ”Certain finiteness conditions in topological groups,” Sib. Mat. Zh.,12, No. 3, 546–553 (1971). · Zbl 0219.22007
[50] B. A. Kramarev, ”On topological FC-groups,” Sib. Mat. Zh.,12, No. 2, 374–383 (1971). · Zbl 0216.09101
[51] B. A. Kramarev, ”Topological groups with invariant centralizers of the elements,” Mat. Zametki,21, No. 3, 297–300 (1977). · Zbl 0403.22002
[52] B. A. Kramarev, ”TopologicalFC-solvable groups,” Mat. Zametki,5, No. 3, 391–400 (1969).
[53] B. A. Kramarev, ”Topological FC-solvable groups with maximality and minimality conditions for subgroups,” Mat. Zametki,6, No. 4, 393–400 (1969).
[54] N. I. Kryuchkov, ”On homomorphism groups and groups of Abelian extensions of locally compact Abelian groups,” Mosk. Gos. Pedagog. Inst., Moscow, 1979. (Manuscript deposited at VINITI, July 12, 1979, No. 2511-79 Dep.)
[55] N. I. Kryuchkov, ”On the groups of pure extensions of locally compact Abelian groups,” Mosk. Gos. Pedagog. Inst., Moscow, 1979. (Manuscript deposited at VINITI, July 12, 1979, No. 2512-79 Dep.)
[56] V. A. Kuz’menchuk, ”On exact operations on the class of topological groups,” Mat. Sb.,78, No. 2, 260–279 (1969).
[57] S. A. Liber, ”On a problem of A. I. Mal’tsev,” Dokl. Akad. Nauk SSSR,211, No. 5, 1050–1052 (1973).
[58] S. A. Liber, ”On topological algebras that are given by defining relations,” Izv. Vyssh. Uchebn. Zaved., Mat., No. 7, 47–58 (1973).
[59] S. A. Liber, ”Free compact algebras,” Mat. Sb.,91, No. 1, 109–133 (1973).
[60] T. M. Lozben’, ”Locally compact groups with complemented closed subgroups,” Mat. Zametki,6, No. 6, 641–649 (1969).
[61] T. M. Lozben’, ”Locally compact groups with a certain system of complemented subgroups,” in: Groups with Restricted Subgroups [in Russian], Naukova Dumka, Kiev (1971), pp. 199–206.
[62] T. M. Lozben’, ”Generalized factorizable groups,” Ukr. Mat. Zh.,23, No. 5, 690–698 (1971). · Zbl 0235.22014
[63] V. I. Malykhin, ”On extremally disconnected topological groups,” Usp. Mat. Nauk,34, No. 6, 59–66 (1979). · Zbl 0426.22002
[64] V. I. Malykhin, ”Extremally disconnected and nearly extremally disconnected groups,” Dokl. Akad. Nauk SSSR,220, No. 1, 27–30 (1975).
[65] A. I. Mal’tsev, ”On the general theory of algebraic systems,” Mat. Sb.,35, No. 1, 3–20 (1954).
[66] A. I. Mal’tsev, ”Free topological algebras,” Izv. Akad. Nauk SSSR, Ser. Mat.,21, No. 2, 171–198 (1957).
[67] L. D. Mdzinarishvili, ”On direct and inverse spectra of groups with singled out subgroups,” Soobshch. Akad. Nauk GSSR,40, No. 3, 521–528 (1965).
[68] O. V. Mel’nikov, ”Automorphism groups of compact totally disconnected Abelian groups,” Dokl. Akad. Nauk BSSR,16, No. 9, 777–780 (1972).
[69] O. V. Mel’nikov, ”Automorphism groups of compact totally disconnected Abelian groups,” Dokl. Akad. Nauk BSSR,19, No. 2, 101–104 (1975).
[70] O. V. Mel’nikov, ”Normal divisors of free profinite groups,” Izv. Akad. Nauk SSSR, Ser. Mat.,42, No. 1, 3–25 (1978). · Zbl 0382.20032
[71] O. V. Mel’nikov, ”On the connected component of the automorphism groups of locally compact groups,” Dokl. Akad. Nauk BSSR,19, No. 12, 1061–1064 (1975).
[72] O. V. Mel’nikov, ”The connected component of the automorphism group of locally compact groups,” Mat. Sb.,102, No. 2, 248–259 (1977).
[73] O. V. Mel’nikov, ”Compactness conditions for the automorphism groups of topological groups,” Mat. Zametki,19, No. 5, 735–743 (1976).
[74] O. V. Mel’nikov, ”The characterization of accessible subgroups of free profinite groups,” Dokl. Akad. Nauk BSSR,22, No. 7, 677–680 (1978). · Zbl 0391.20021
[75] Yu. I. Metzlyakov, ”On linear groups with bounded cyclic subgroups,” Sib. Mat. Zh.,7, No. 2, 318–322 (1966).
[76] A. E. Merzon, ”On a certain property of topological-algebraic categories,” Usp. Mat. Nauk,27, No. 4, 217 (1972).
[77] E. N. Mikhailov, ”On duality in categories of topological groups,” Dokl. Akad. Nauk SSSR,251, No. 5, 1059–1062 (1980).
[78] Z. I. Moskalenko, ”On the question of the locally compact topologization of a group,” Ukr. Mat. Zh.,30, No. 2, 257–260 (1978).
[79] Z. I. Moskalenko, ”Locally compact Abelian groups of finite rank,” Ukr. Mat. Zh.,22, No. 2, 174–181 (1970). · Zbl 0231.22005
[80] Z. I. Moskalenko, ”Locally compact supersolvable groups,” Ukr. Mat. Zh.,25, No. 2, 235–247 (1973).
[81] Z. I. Moskalenko, ”On the automorphism groups of compact totally disconnected nilpotent groups,” Ukr. Mat. Zh.,32, No. 1, 46–52 (1980). · Zbl 0446.22007
[82] Z. I. Moskalenko, ”On the rank of connected locally compact groups,” Ukr. Mat. Zh.,28, No. 3, 325–333 (1976).
[83] Z. I. Moskalenko, ”On the existence of compact totally disconnected groups with a locally compact but noncompact group of topological automorphisms,” Ukr. Mat. Zh.,31, No. 2, 196–201 (1979). · Zbl 0419.22003
[84] Z. I. Moskalenko, ”An estimate of the rank of locally compact solvable groups,” Ukr. Mat. Zh.,30, No. 3, 386–389 (1978). · Zbl 0408.22008
[85] Z. I. Moskalenko, ”An estimate of the rank of connected locally compact nilpotent groups,” Ukr. Mat. Zh.,29, No. 3, 333–343 (1977). · Zbl 0419.22011
[86] Z. I. Moskalenko, ”The rank of connected Lie groups,” Dopovidi Akad. Nauk Ukr. RSR, Ser. A, No. 1, 39–41 (1974).
[87] Z. I. Moskalenko, ”A condition for the finiteness of the rank of locally compact solvable groups,” Ukr. Mat. Zh.,28, No. 5, 639–645 (1976).
[88] Z. I. Moskalenko and I. B. Matusov, ”On the unique determination of a locally compact topology on a group by a system of closed subgroups,” Dokl. Akad. Nauk Ukr. SSR, Ser. A, No. 2, 115–117 (1976). · Zbl 0315.22003
[89] Yu. N. Mukhin, ”Complements in subgroups of compact groups,” Ural. Gos. Univ. Mat. Zap.,10, No. 1, 97–103 (1976). · Zbl 0413.22001
[90] Yu. N. Mukhin, ”Complements in topological groups,” Mat. Zap. Ural’sk. Univ.,8, No. 1, 59–76 (1971). · Zbl 0326.22003
[91] Yu. N. Mukhin, ”Locally compact groups of finite rank,” Algebra Logika,17, No. 4, 416–435 (1978). · Zbl 0427.22004
[92] Yu. N. Mukhin, ”Locally compact groups with a distributive lattice of closed subgroups,” Sib. Mat. Zh.,8, No. 2, 366–375 (1967). · Zbl 0153.35203
[93] Yu. N. Mukhin, ”On automorphisms that fix the closed subgroups of a topological group,” Sib. Mat. Zh.,16, No. 6, 1231–1239 (1975).
[94] Yu. N. Mukhin, ”On the Frattini subgroup of a topological group,” Izv. Vyssh. Uchebn. Zaved., Mat., No. 1, 53–61 (1971).
[95] Yu. N. Mukhin, ”On lattice isomorphisms of pronilpotent groups,” in: Seventh All-Union Symposium on Group Theory [in Russian], Krasnoyarsk (1980), p. 77.
[96] Yu. N. Mukhin, ”On lattice isomorphisms of prosolvable groups,” in: Sixth All-Union Symposium on Group Theory [in Russian], Naukova Dumka, Kiev (1980), pp. 103–111.
[97] Yu. N. Mukhin, ”On topological groups whose nonnilpotent subgroups are all invariant,” Ural. Gos. Univ. Mat. Zap.,11, No. 3, 127–139 (1979).
[98] Yu. N. Mukhin, ”On the number of generating elements of a locally compact Abelian group,” in: Algebraic Studies [in Russian], Izd. Ural. Politekh. Inst., Sverdlovsk (1976), pp. 23–33.
[99] Yu. N. Mukhin, ”Subgroup lattices of connected groups,” Sib. Mat. Zh.,20, No. 4, 826–834 (1979). · Zbl 0424.22005
[100] Yu. N. Mukhin, ”Semimodular compact groups,” Mat. Zametki,3, No. 5, 503–509 (1968). · Zbl 0182.04502
[101] Yu. N. Mukhin, ”Projections of compact p-groups,” Ural. Gos. Univ. Mat. Zap.,6, No. 1, 55–66 (1967). · Zbl 0301.22002
[102] Yu. N. Mukhin, ”Projections of compact p-groups. II,” Ural. Gos. Univ. Mat. Zap.,9, No. 3, 73–84 (1975). · Zbl 0414.22008
[103] Yu. N. Mukhin, ”Projections of pure nilpotent groups,” Algebra Logika,5, No. 4, 43–54 (1966). · Zbl 0224.22010
[104] Yu. N. Mukhin, ”Standard subgroups of topological groups,” Mat. Zap. Ural’sk. Univ.,7, No. 1, 95–117 (1969).
[105] Yu. N. Mukhin, ”Topological Abelian groups with a Dedekind lattice of closed subgroups,” Mat. Zametki,8, No. 4, 509–519 (1970).
[106] Yu. N. Mukhin, ”Topological groups with a transitive normality relation,” Mat. Zap. Ural’sk. Univ.,12, No. 1, 112–130 (1980). · Zbl 0487.22003
[107] Yu. N. Mukhin, ”Endomorphisms of the lattice of closed subgroups of a topological groups,” Dokl. Akad. Nauk SSSR,189, No. 1, 42–44 (1969).
[108] Yu. N. Mukhin and I. V. Protasov, ”On projections of topological Abelian groups,” Ukr. Mat. Zh.,30, No. 4, 551–556 (1978). · Zbl 0407.22004
[109] Yu. N. Mukhin and E. N. Starukhina, ”On a certain finiteness condition in topological groups,” Sib. Mat. Zh.,15, No. 3, 562–569 (1974). · Zbl 0292.22009
[110] Yu. N. Mukhin and E. N. Starukhina, ”On groups of finite rank,” Mat. Zap. Ural’sk. Univ.,9, No. 1, 56–60 (1974).
[111] Yu. N. Mukhin and E. N. Starukhina, ”On two discreteness conditions in topological groups,” Izv. Vyssh. Uchebn. Zaved., Mat., No. 9, 76–83 (1978). · Zbl 0407.22003
[112] Yu. N. Mukhin and E. N. Starukhina, ”On certain finiteness conditions in topological groups,” in: Fourth All-Union Symposium on Group Theory. Abstracts of Proceedings [in Russian], Novosibirsk (1973), pp. 150–152.
[113] Yu. N. Mukhin and E. N. Starukhina, ”On connected groups of finite rank,” Mat. Zap. Ural’sk. Univ.,8, No. 3, 94–99 (1973).
[114] Yu. N. Mukhin and M. Yu. Feiman, ”On solvable topological groups of Mal’tsev type,” Mat. Zap. Ural’sk. Univ.,11, No. 1, 125–136 (1979).
[115] Yu. N. Mukhin and S. P. Khomenko, ”Monothetic groups and the subgroup lattice,” Mat. Zap. Ural’sk. Univ.,6, No. 1, 67–79 (1967).
[116] Yu. N. Mukhin and S. P. Khomenko, ”On finitely generated connected groups,” Ukr. Mat. Zh.,30, No. 3, 390–394 (1978). · Zbl 0408.22007
[117] Yu. N. Mukhin and S. P. Khomenko, ”On connected groups whose normal subgroups are all Abelian,” Mat. Zap. Ural’sk. Univ.,10, No. 3, 127–137 (1977). · Zbl 0436.22004
[118] Yu. N. Mukhin and S. P. Khomenko, ”On topological Shmidt groups,” Mat. Zap. Ural’sk. Univ.,10, No. 1, 104–113 (1976).
[119] Yu. N. Mukhin and S. P. Khomenko, ”Topological Shmidt groups,” in: Groups with Restricted Subgroups [in Russian], Naukova Dumka, Kiev (1971), pp. 206–217.
[120] S. I. Nedev and M. M. Choban ”On the metrizability of topological groups,” Vestn. Mosk. Univ. Ser. Mat. Mekh., No. 6, 18–20 (1968). · Zbl 0185.07205
[121] A. Yu. Ol’shanskii, ”A remark on a countable non-topologizable group,” Vestn. Mosk. Univ. Ser. I Mat. Mekh., No. 3, 103 (1980).
[122] A. Yu. Ol’shanskii, ”On the question of the existence of an invariant mean on a group,” Usp. Mat. Nauk,35, No. 4, 199–200 (1980).
[123] A. Yu. Ol’shanskii, ”On the finite basis problem for identities in groups,” Izv. Akad. Nauk SSSR, Ser. Mat.,34, No. 2, 376–384 (1970).
[124] V. V. Ostapenko, ”Linear topological N-groups,” Ukr. Mat. Zh.,30, No. 3, 400–403 (1978). · Zbl 0382.22001
[125] B. A. Pasynkov, ”On spaces with a bicompact transformation group,” Dokl. Akad. Nauk SSSR,231, No. 1, 39–42 (1976).
[126] B. A. Pasynkov, ”On sections over zero-dimensional subsets of quotient spaces of locally bicompact groups,” Dokl. Akad. Nauk SSSR,178, No. 6, 1255–1258 (1968).
[127] B. A. Pasynkov, ”On topological groups,” Dokl. Akad. Nauk SSSR,188, No. 2, 286–289 (1969). · Zbl 0219.22001
[128] B. A. Pasynkov, ”Almost metrizable topological groups,” Dokl. Akad. Nauk SSSR,161, No. 2, 281–284 (1965). · Zbl 0132.27802
[129] Yu. N. Pilipenko, ”Topological groups with Sylow subgroups of rank 1,” in: Theoretical and Applied Questions of Differential Equations and Algebras [in Russian], Naukova Dumka, Kiev (1978), pp. 196–199.
[130] V. P. Platonov, ”On the theory of topological groups,” Dokl. Akad. Nauk SSSR,162, No. 4, 755–758 (1965).
[131] V. P. Platonov, ”Locally protectively nilpotent subgroups and nilelements in topological groups,” Izv. Akad. Nauk SSSR, Ser. Mat.,30, No. 6, 1257–1274 (1966).
[132] V. P. Platonov, ”Locally protectively nilpotent radical in topological groups,” Dokl. Akad. Nauk BSSR,9, No. 9, 573–577 (1965). · Zbl 0242.22006
[133] V. P. Platonov, ”On certain classes of topological groups,” Sib. Mat. Zh.,7, No. 5, 1095–1105 (1966). · Zbl 0166.02701
[134] V. P. Platonov, ”On topological groups with a compact spectrum,” Dokl. Akad. Nauk BSSR,12, No. 4, 398 (1968).
[135] V. P. Platonov, ”Periodic and compact subgroups of topological groups,” Sib. Mat. Zh.,7, No. 4, 854–877 (1966).
[136] V. P. Platonov, ”The structure of topological locally projectively nilpotent groups and groups with a normalizer condition,” Mat. Sb.,72, No. 1, 38–58 (1967).
[137] V. P. Platonov, ”Engel elements and the radical in PI-algebras and topological groups,” Dokl. Akad. Nauk SSSR,161, No. 2, 288–291 (1965). · Zbl 0136.29503
[138] V. P. Platonov and A. E. Zalesskii, ”On the Auerbach problem,” Dokl. Akad. Nauk BSSR,10, No. 1, 5–6 (1966).
[139] V. P. Platonov and Nguen Kuok Tkhi, ”Maximal periodic subgroups of locally compact groups,” Dokl. Akad. Nauk BSSR,15, No. 7, 575–577 (1971). · Zbl 0234.22009
[140] V. M. Poletskikh, ”ZA-groups with an inductivity condition for normal divisors,” Dokl. Akad. Nauk SSSR, Ser. A, No. 4, 311–314 (1976).
[141] V. M. Poletskikh, ”Locally compact groups with an inductivity condition for closed subgroups,” Sib. Mat. Zh.,14, No. 3, 624–635 (1973).
[142] V. M. Poletskikh, ”Locally compact locally nilpotent groups with the inductivity condition for serving subgroups,” Sib. Mat. Zh.,17, No. 5, 1097–1107 (1976).
[143] V. M. Poletskikh, ”On a certain open mapping,” Ukr. Mat. Zh.,31, No. 6, 692–697 (1979).
[144] V. M. Poletskikh, ”On certain types of groups of rank one,” Ukr. Mat. Zh.,27, No. 2, 265–270 (1975). · Zbl 0323.22006
[145] V. M. Poletskikh, ”On certain properties of groups with an inductivity condition for subgroups,” Dokl. Akad. Nauk Ukr. SSR, Ser. A, No. 12, 1076–1079 (1976).
[146] V. M. Poletskikh, ”On certain discreteness conditions that can be imposed on topological groups,” Mat. Zametki,13, No. 3, 437–442 (1973).
[147] V. M. Poletskikh, ”On topological groups that are nearly groups of rank one,” Ukr. Mat. Zh.,28, No. 6, 772–781 (1976).
[148] V. M. Poletskikh, ”Primary layer-compact topological groups,” Dokl. Akad. Nauk Ukr. SSR, Ser. A, No. 9, 26–28 (1980).
[149] V. M. Poletskikh, ”Topological groups whose subgroups are all closed,” Dopovidi Akad. Nauk URSR, Ser. A, No. 2, 142–143 (1969).
[150] V. M. Poletskikh, ”Solvable topological groups whose closed subgroups are all Abelian,” in: Groups with Restricted Subgroups [in Russian], Naukova Dumka, Kiev (1971), pp. 217–227.
[151] V. M. Poletskikh, ”Weakly divisible topological p-groups,” Dopovidi Akad. Nauk Ukr. RSR, Ser. A, No. 2, 125–128 (1975).
[152] V. M. Poletskikh, ”Layer-compact Abelian groups,” Ukr. Mat. Zh.,23, No. 1, 15–24 (1971).
[153] V. M. Poletskikh, ”Layer-compact nilpotent groups,” Sib. Mat. Zh.,16, No. 4, 801–809 (1975).
[154] V. M. Poletskikh, ”Topological groups with a compactness condition for the classes of conjugate elements,” Mat. Zametki,21, No. 2, 251–257 (1977).
[155] V. M. Poletskikh, ”The topological isolator of a subgroup of finite rank,” Ukr. Mat. Zh.,29, No. 5, 614–624 (1977). · Zbl 0419.22006
[156] V. M. Poletskikh, ”Topological groups with a compact space of classes of conjugate elements,” Dopovidi Akad. Nauk Ukr. RSR, Ser. A, No. 1, 47–48 (1974).
[157] V. M. Poletskikh, ”Topological groups with a countable number of subgroups,” Visnik Kiev. Univ. Ser. Mat. Mekh., No. 21, 127–134 (1979). · Zbl 0659.22005
[158] V. M. Poletskikh and V. S. Charin, ”Layer-compact locally nilpotent p-groups,” Dokl. Akad. Nauk SSSR,198, No. 5, 1025–1027 (1971). · Zbl 0228.22010
[159] V. M. Poletskikh and V. S. Charin, ”A class of locally compact solvable groups,” Visnik Kiev. Univ. Ser. Mat. Mekh., No. 20, 98–108 (1978). · Zbl 0497.22007
[160] L. S. Pontryagin, Continuous Groups [in Russian], Nauka, Moscow (1973).
[161] I. V. Protasov, ”Closed invariant subgroups of locally compact groups,” Dokl. Akad. Nauk SSSR,239, No. 5, 1060–1062 (1978). · Zbl 0396.22006
[162] I. V. Protasov, ”On the theory of topological algebraic systems,” Dokl. Akad. Nauk Ukr. SSR, Ser. A, No. 1, 15–17 (1980). · Zbl 0424.03019
[163] I. V. Protasov, ”Local theorems for topological groups,” Izv. Akad. Nauk SSSR, Ser. Mat.,43, No. 6, 1430–1440 (1979).
[164] I. V. Protasov, ”On a problem of I. Kaplansky,” Dokl. Akad. Nauk Ukr. SSR, Ser. A, No. 12, 1079–1080 (1976). · Zbl 0355.22002
[165] I. V. Protasov, ”On dualisms of topological Abelian groups,” Ukr. Mat. Zh.,31, No. 2, 207–211 (1979). · Zbl 0428.22001
[166] I. V. Protasov, ”On local theorems in the theory of topological groups,” Dokl. Akad. Nauk SSSR,242, No. 4, 777–779 (1978).
[167] I. V. Protasov, ”On the lattice of subgroups of a profinite group,” Dokl. Akad. Nauk Ukr. SSR, Ser. A, No. 11, 975–978 (1978). · Zbl 0389.22003
[168] I. V. Protasov, ”The projection of connected groups,” Dokl. Akad. Nauk Ukr. SSR, Ser. A, No. 2, 109–111 (1978). · Zbl 0395.22002
[169] I. V. Protasov, ”The projection of zero-dimensional nilpotent groups,” Mat. Zametki,24, No. 5, 717–722 (1978).
[170] I. V. Protasov, ”Topology in the lattice of subgroups of a topological group,” Ed. Board Sib. Mat. Zh., Sib. Otd. Akad. Nauk SSSR, Novosibirsk, 1980. (Manuscript deposited at VINITI, Apr. 24, 1980, No. 1618-80 Dep.) · Zbl 0466.22002
[171] I. V. Protasov, ”Topological groups with a compact lattice of closed subgroups,” Sib. Mat. Zh.,20, No. 2, 378–385 (1979). · Zbl 0431.22002
[172] I. V. Protasov, ”Topological dualisms of locally compact Abelian groups,” Ukr. Mat. Zh.,29, No. 5, 625–631 (1977).
[173] I. V. Protasov, ”Topological properties of the lattice of subgroups,” Ukr. Mat. Zh.,32, No. 3, 355–360 (1980). · Zbl 0456.22002
[174] I. V. Protasov and A. Saryev, ”Topological Abelian groups with a locally compact lattice of closed subgroups,” Dokl. Akad. Nauk Ukr. SSR, Ser. A, No. 3, 29–32 (1980). · Zbl 0434.22003
[175] I. V. Protasov and V. S. Charin, ”On groups with monogenerated invariant subgroups,” Ukr. Mat. Zh.,29, No. 2, 275–280 (1977).
[176] I. V. Protasov and V. S. Charin, ”On projections of topological groups,” Mat. Zap. Ural’sk. Univ.,11, No. 1, 145–156 (1978). · Zbl 0434.22002
[177] I. V. Protasov and V. S. Charin, ”On the projection of topological groups,” Mat. Zametki,24, No. 3, 383–389 (1978). · Zbl 0434.22002
[178] M. S. Raghunathan, Discrete Subgroups of Lie Groups, Springer-Verlag, New York (1972). · Zbl 0254.22005
[179] V. N. Remeslennikov, ”Imbedding theorems for profinite groups,” Izv. Akad. Nauk SSSR, Ser. Mat.,43, No. 2, 399–417 (1979).
[180] N. Rechkoski, ”The complete regularity of a topological group,” Bull. Soc. Math. Phys. Macédoine,21, 49–51 (1970). · Zbl 1057.46037
[181] V. A. Rudenko, ”A certain topological variant of the property of complete factorizability of a group,” Dopovidi Akad. Nauk Ukr. RSR, Ser. A, No. 12, 1070–1072 (1974). · Zbl 0295.22001
[182] V. A. Rudenko, ”Topological groups with a minimality condition for noncomplementable subgroups,” Mat. Zap. Ural’sk. Univ.,11, No. 3, 152–157 (1979).
[183] A. Saryev, ”On a certain topology in the lattice of subgroups of a topological group,” Izv. Akad. Nauk TurkSSR, Ser. Fiz.-Tekh., Khim. Geol. Nauk, No. 6, 3–8 (1979). · Zbl 0425.22003
[184] J.-P. Serre, Cohomologie Galoisienne, Springer-Verlag, Berlin (1964).
[185] S. M. Sirota, ”On topologies on a product of groups,” Dokl. Akad. Nauk SSSR,183, No. 6, 1265–1268 (1968).
[186] S. M. Sirota, ”The product of topological groups and extremal disconnectedness,” Mat. Sb.,79, No. 2, 179–192 (1969).
[187] E. G. Sklyarenko, ”On Hilbert’s fifth problem,” in: Hilbert’s Problems [in Russian], Nauka, Moscow (1969), pp. 101–115.
[188] G. A. Soifer, ”Maximal subgroups and the Frattini subgroup of a Lie group,” Funkts. Anal. Prilozhen.,10, No. 2, 88–89 (1976).
[189] E. N. Starukhina, ”On coatomic topological groups,” Ural. Gos. Univ. Mat. Zap.,11, No. 3, 170–179 (1979).
[190] E. N. Starukhina, ”On topological groups with a coatomic lattice of closed subgroups,” Ural. Gos. Univ. Mat. Zap.,10, No. 3, 173–190 (1977). · Zbl 0436.22001
[191] E. N. Starukhina, ”The weak minimality condition in topological groups,” Ural. Gos. Univ. Mat. Zap.,11, No. 1, 157–181 (1978). · Zbl 0469.22001
[192] S. P. Strunkov, ”Topological Hamiltonian groups,” Usp. Mat. Nauk,20, No. 6, 157–161 (1965).
[193] O. É. Surmanidze, ”Direct decompositions of linearly discrete Abelian groups,” Soobshch. Akad. Nauk GSSR,89, No. 3, 529–532 (1978). · Zbl 0391.20041
[194] O. É. Surmanidze, ”Direct decompositions of locally compact Abelian groups,” Soobshch. Akad. Nauk GSSR,89, No. 2, 292–295 (1978). · Zbl 0387.22003
[195] O. É. Surmanidze, ”Weakly linearly compact topological Abelian groups,” Trudy Tbilis. Mat. Inst. Akad. Nauk GSSR,46, 77–108 (1975). · Zbl 0516.22001
[196] A. D. Tavadze, ”On pronilpotent groups,” Soobshch. Akad. Nauk GSSR,79, No. 2, 301–304 (1975).
[197] A. D. Tavadze, ”Periodic pronilpotent groups,” Soobshch. Akad. Nauk GSSR,88, No. 2, 289–291 (1977). · Zbl 0381.20024
[198] A. D. Tavadze, ”Projective pronilpotent W-groups,” Soobshch. Akad. Nauk GSSR,84, No. 2, 273–276 (1976). · Zbl 0361.20038
[199] A. D. Tavadze and A. L. Shmel’kin, ”Subgroups of free pronilpotent groups,” Soobshch. Akad. Nauk GSSR,93, No. 2, 277–279 (1979). · Zbl 0431.22001
[200] A. D. Taimanov, ”On the topologizability of countable algebras,” in: Mathematical Analysis and Related Mathematical Questions [in Russian], Nauka, Novosibirsk (1978), pp. 254–275.
[201] A. D. Taimanov, ”On topologizable groups,” Sib. Mat. Zh.,18, No. 4, 947–948 (1977).
[202] A. D. Taimanov, ”On topologizable groups. II,” Sib. Mat. Zh.,19, No. 5, 1201–1203 (1978).
[203] V. I. Ushakov, ”Algebraically compact groups,” Mat. Zametki,24, No. 6, 763–770 (1978).
[204] V. I. Ushakov, ”Classes of conjugate subgroups in topological groups,” Dokl. Akad. Nauk SSSR,190, No. 1, 51–53 (1970). · Zbl 0217.08602
[205] V. I. Ushakov, ”On bicompactly generated groups,” Usp. Mat. Nauk,19, No. 1, 179–182 (1964). · Zbl 0156.26105
[206] V. I. Ushakov, ”On the hypercenters of topological groups,” Mosk. Gos. Pedagog. Inst. Uch. Zap., No. 375, 87–89 (1971).
[207] V. I. Ushakov, ”On groups with a normalizer condition for closed subgroups,” Izv. Akad. Nauk SSSR, Ser. Mat.,29, No. 5, 1055–1068 (1965).
[208] V. I. Ushakov, ”Topological groups with bicompact classes of conjugate subgroups,” Mat. Sb.,63, No. 2, 277–283 (1964).
[209] V. I. Ushakov, ”Topological locally nilpotent groups,” Sib. Mat. Zh.,6, No. 3, 581–595 (1965).
[210] V. I. Ushakov, ”Topological FC-groups,” Sib. Mat. Zh.,4, No. 5, 1162–1174 (1963). · Zbl 0158.27504
[211] E. G. Khlyupina, ”On compactness properties in classes of groups of type 1,” Dokl. Akad. Nauk SSSR,241, No. 3, 544–546 (1978). · Zbl 0437.22006
[212] E. G. Khlyupina, ”On the characterization of groups with finite-dimensional irreducible representations,” Moscow State Univ. (1977). (Manuscript deposited at VINITI, Jan. 10, 1978, No. 156-78 Dep.)
[213] S. P. Khomenko, ”The closures of rational groups,” Mat. Zap. Ural’sk. Univ.,9, No. 1, 127–139 (1974).
[214] S. P. Khomenko, ”On the extraction of roots in topological groups,” Izv. Vyssh. Uchebn. Zaved., Mat., No. 9, 68–75 (1975). · Zbl 0344.22007
[215] S. P. Khomenko, ”On groups of general rank 1,” Mat. Zap. Ural’sk. Univ.,6, No. 3, 65–70 (1968). · Zbl 0332.22007
[216] S. P. Khomenko, ”On topological groups whose normal subgroups are all monothetic,” Mat. Zap. Ural’sk. Univ.,9, No. 3, 109–117 (1975).
[217] S. P. Khomenko, ”On topological groups with normal nonmonothetic subgroups,” Mat. Zap. Ural’sk. Univ.,9, No. 3, 118–130 (1975).
[218] V. A. Khoteev and V. S. Charin, ”Groups with the minimality condition for subgroups,” Mat. Zametki,2, No. 1, 3–10 (1967). · Zbl 0232.22014
[219] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis, Vol. 1: Structure of Topological Groups; Integration Theory; Group Representations, Springer-Verlag, Berlin (1963). · Zbl 0115.10603
[220] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis, Vol. 2: Structure and Analysis for Compact Groups; Analysis on Locally Compact Abelian Groups, Springer-Verlag, Berlin (1970). · Zbl 0213.40103
[221] O. E. Tsitritskii, ”Real characters and convex sets in topological groups,” Ukr. Mat. Zh.,27, No. 3, 415–421 (1975).
[222] V. S. Charin, ”Groups with complemented subgroups,” in: Groups with Restricted Subgroups [in Russian], Naukova Dumka, Kiev (1971), pp. 185–199.
[223] V. S. Charin, ”Groups with complemented subgroups,” Dokl. Akad. Nauk SSSR,173, No. 1, 50–53 (1967). · Zbl 0168.27403
[224] V. S. Charin, ”A remark on Carter’s theorem,” Ukr. Mat. Zh.,17, No. 6, 132–134 (1965). · Zbl 0152.01101
[225] V. S. Charin, ”Certain questions on the development of the theory of topological groups in the Soviet Union,” in: Groups with Restricted Subgroups [in Russian], Naukova Dumka, Kiev (1971), pp. 39–46.
[226] V. S. Charin, ”On a certain class of topological FC-groups,” Ukr. Mat. Zh.,29, No. 3, 415–418 (1977). · Zbl 0366.22002
[227] V. S. Charin, ”On groups of finite rank. II,” Ukr. Mat. Zh.,18, No. 3, 85–96 (1966). · Zbl 0229.22002
[228] V. S. Charin, ”On groups of finite rank. III,” Ukr. Mat. Zh.,21, No. 3, 344–353 (1969).
[229] V. S. Charin, ”On Maschke’s theorem,” Mat. Zametki,4, No. 2, 151–154 (1968). · Zbl 0184.05204
[230] V. S. Charin, ”Topological algebra,” in: History of National Mathematics [in Russian], Vol. 3, Naukova Dumka, Kiev (1968), pp. 341–362.
[231] V. S. Charin, ”Topological groups,” in: Algebra, 1964, Itogi Nauki VINITI Akad. Nauk SSSR, Moscow (1966), pp. 123–160.
[232] S. N. Chernikov, D. I. Zaitsev, and V. S. Charin, ”Abstract group-theoretic investigations and the theory of topological groups,” Ukr. Mat. Zh.,25, No. 6, 772–783 (1973).
[233] M. M. Choban, ”On the completion of topological groups,” Vestn. Mosk. Univ. Ser. I Mat. Mekh., No. 1, 33–38 (1970). · Zbl 0205.04203
[234] M. M. Choban, ”The topological structure of the subsets of topological groups and their quotient spaces,” Mat. Issled., No. 44, 117–163 (1977).
[235] M. M. Choban, ”The topological structure of the subsets of topological groups and their quotient spaces,” Dokl. Akad. Nauk SSSR,228, No. 1, 52–55 (1976). · Zbl 0346.22007
[236] L. B. Shneperman, ”On semigroups of endomorphisms of infinite topological groups and inverse semigroups,” Dokl. Akad. Nauk BSSR,16, No. 8, 681–683 (1972).
[237] A. I. Shtern, ”Locally bicompact groups with finite-dimensional irreducible representations,” Mat. Sb.,90, No. 1, 86–95 (1973).
[238] A. I. Shtern, ”On groups with a bicompact dual space,” Usp. Mat. Nauk,26, No. 3, 217–218 (1971).
[239] A. I. Shtern, ”On the connection between the topologies of a locally bicompact group and its dual space,” Funkts. Anal. Prilozhen.,5, No. 4, 56–63 (1971). · Zbl 0226.35072
[240] E. V. Shchepin, ”On topological products, groups, and a new class of spaces that are more general than metric spaces,” Dokl. Akad. Nauk SSSR,226, No. 3, 527–529 (1976).
[241] S. D. Yatsevich, ”On the connected components of subgroups of topological groups,” in: Materials of the Scientific-Theoretic Conference of Young Scientists, Minsk. Gos. Pedagog. Inst., Minsk (1975), pp. 434–437.
[242] H. Abels, ”Enden von Räumen mit eigentlichen Transformationsgruppen,” Comment. Math. Helv.,47, 457–473 (1972). · Zbl 0253.54039
[243] H. Abels, ”Kompakt definierbare topologische Gruppen,” Math. Ann.,197, No. 3, 221–233 (1972). · Zbl 0225.22005
[244] H. Abels, ”Normen auf freien topologischen Gruppen,” Math. Z.,129, No. 1, 25–42 (1972). · Zbl 0232.22005
[245] H. Abels, ”On a problem of Freudenthal’s,” Compositio Math.,35, No. 1, 39–47 (1977). · Zbl 0352.22003
[246] H. Abels, ”Specker-Kompaktifizierungen von lokal kompakten topologischen Gruppen,” Math. Z.,135, No. 4, 325–361 (1973/74). · Zbl 0275.22011
[247] H. Abels, ”Über eigentliche Transformationsgruppen,” Math. Z.,110, No. 1, 75–100 (1969). · Zbl 0182.36004
[248] P. R. Ahern and R. I. Jewett, ”Factorization of locally compact Abelian groups,” Illinois J. Math.,9, No. 2, 230–235 (1965). · Zbl 0132.27603
[249] C. A. Akemann and M. E. Walter, ”Non-Abelian Pontriagin duality,” Duke Math. J.,39, No. 3, 451–463 (1972). · Zbl 0243.43005
[250] O. T. Alas, ”Paracompact topological groups and uniform continuity,” Monatsh. Math.,77, No. 5, 385–388 (1973). · Zbl 0269.22001
[251] D. H. Anderson, ”Closed subgroups of a locally compact group,” Am. Math. Monthly,78, No. 9, 1011–1022 (1971). · Zbl 0225.22007
[252] M. P. Anderson, ”Subgroups of finite index in profinite groups,” Pac. J. Math.,62, No. 1, 19–28 (1976). · Zbl 0302.20035
[253] N. Aoki, ”Expansive automorphisms of locally compact solvable groups,” Tokyo J. Math.,2, No. 2, 343–347 (1979). · Zbl 0427.22003
[254] A. Arhangelski, ”Groupes topologiques extrémalement discontinus,” C. R. Acad. Sci. Paris,265, No. 25, A822-A825 (1967). · Zbl 0168.43702
[255] F. Aribaud, ”Représentations linéaires p-adiques des groupes compacts totalement discontinus,” Séminaire Délange-Pisot-Poitou. Théor. Nombres. Fac. Sci. Paris,11, No. 2, 16/01–16/24 (1969–1970).
[256] D. L. Armacost, ”Can an LCA group be anti-self-dual? Proc. Am. Math. Soc.,27, No. 1, 186–188 (1971). · Zbl 0213.31204
[257] D. L. Armacost, ”Compactly generated LCA groups,” Pac. J. Math.,65, No. 1, 1–12 (1976). · Zbl 0319.22003
[258] D. L. Armacost, ”Generators of monothetic groups,” Can. J. Math.,23, No. 5, 791–796 (1971). · Zbl 0225.20023
[259] D. L. Armacost, ”Mapping properties of characters of LCA groups,” Fund. Math.,76, No. 1, 1–7 (1972). · Zbl 0215.11703
[260] D. L. Armacost, ”On pure subgroups of LCA groups,” Proc. Am. Math. Soc.,45, No. 3, 414–418 (1974). · Zbl 0293.22007
[261] D. L. Armacost, ”Remarks on my paper ’Generators of monothetic groups,”’ Can. J. Math.,25, No. 3, 672 (1973). · Zbl 0261.20024
[262] D. L. Armacost, ”Sufficiency classes of LCA groups,” Trans. Am. Math. Soc.,158, No. 2, 331–338 (1971). · Zbl 0218.22009
[263] D. L. Armacost, ”Well-known LCA groups characterized by their closed subgroups,” Proc. Am. Math. Soc.,25, No. 3, 625–629 (1970). · Zbl 0217.08601
[264] D. L. Armacost and W. L. Armacost, ”On p-thetic groups,” Pac. J. Math.,41, No. 2, 295–301 (1972). · Zbl 0228.22009
[265] D. L. Armacost and W. L. Armacost, ”On Q-dense and densely divisible LCA groups,” Proc. Am. Math. Soc.,36, No. 1, 301–305 (1972). · Zbl 0255.22006
[266] D. L. Armacost and W. L. Armacost, ”Uniqueness in structure theorems for LCA groups,” Can. J. Math.,30, No. 3, 593–599 (1978). · Zbl 0358.22001
[267] D. L. Armacost and R. R. Bruner, ”Locally compact groups without distinct isomorphic closed subgroups,” Proc. Am. Math. Soc.,40, No. 1, 260–264 (1973). · Zbl 0266.22007
[268] R. W. Bagley and K. K. Lau, ”Semidirect products of topological groups with equal uniformities,” Proc. Am. Math. Soc.,29, No. 1, 179–182 (1971). · Zbl 0215.11601
[269] R. W. Bagley and T. S. Wu, ”Topological groups with equal left and right uniformities,” Proc. Am. Math. Soc.,18, No. 1, 142–147 (1967). · Zbl 0146.04402
[270] J. W. Baker, ”A note on the duality of locally compact groups,” Glasgow Math. J.,9, No. 2, 87–91 (1968). · Zbl 0182.04601
[271] J. W. Baker, ”Topological groups and the closed-graph theorem,” J. London Math. Soc.,42, No. 2, 217–225 (1967). · Zbl 0166.02604
[272] J. W. Baker and P. Milnes, ”The ideal structure of the Stone-Čech compactification of a group,” Math. Proc Cambridge Philos. Soc.,82, No. 3, 401–409 (1977). · Zbl 0369.22004
[273] P. Bankston, ”Ultraproducts in topology,” General Topology Appl.,7, No. 3, 283–308 (1977). · Zbl 0364.54005
[274] W. Barit and P. Renaud, ”There are no uniquely homogeneous spaces,” Proc. Am. Math. Soc.,68, No. 3, 385–386 (1978). · Zbl 0378.54018
[275] M. Barr, ”A closed category of reflexive topological Abelian groups,” Cahiers Topologie Géom. Différentielle,18, No. 3, 221–248 (1977). · Zbl 0371.18008
[276] H. Bass and T. Soundararajan, ”A property of profinite groups and the converse of classical Galois theory,” J. Indian Math. Soc.,36, Nos. 1–2, 1–7 (1972). · Zbl 0284.20037
[277] K. P. S. Bhaskara Rao and M. Bhaskara Rao, ”On the difference of two second category Baire sets in a topological group,” Proc Am. Math. Soc.,47, No. 1, 257–258 (1975). · Zbl 0295.22003
[278] K. Bichteler, ”Locally compact topologies on a group and the corresponding continuous irreducible representations,” Pac. J. Math.,31, No. 3, 583–593 (1969). · Zbl 0216.34403
[279] K. Bicknell and S. A. Morris, ”Norms on free topological groups,” Bull. London Math. Soc.,10, No. 3, 280–284 (1978). · Zbl 0406.22003
[280] E. Binz, J. Neukirch, and G. H. Wenzel, ”A subgroup theorem for free products of profinite groups,” J. Algebra,19, No. 1, 104–109 (1971). · Zbl 0232.20052
[281] Ph. Blanc, ”Sur la cohomologie continue des groupes localement compacts,” Ann. Sci. Ecole Norm. Sup.,12, No. 2, 137–168 (1979). · Zbl 0429.57012
[282] C. R. Borges, ”Free groups, symmetric and reduced products,” J. Austral. Math. Soc. Ser. A,28, No. 2, 174–178 (1979). · Zbl 0435.22008
[283] C. R. Borges, ”Free topological groups,” J. Austral. Math. Soc. Ser. A,23, No. 3, 360–365 (1977). · Zbl 0369.22001
[284] H. Boseck, ”Schreiersche Gruppenerweiterungen und die Erweiterungstheorie topologischer Gruppen,” in: Contrib. Extens. Theory Topol. Struct. Proc. Sympos. Berlin, 1967, Berlin (1969), pp. 41–43. · Zbl 0205.04104
[285] H. Boseck, ”The 5th Hilbert problem,” Math. Nachr.,67, 59–61 (1975). · Zbl 0312.22008
[286] H. Boseck, ”Über den Zusammenhang zwischen den Kompaktifizierungen einer topologischen Gruppe und den Kompaktifizierungen ihrer Normalteiler und Faktorgruppen,” Math. Nachr.,39, Nos. 1–3, 21–31 (1969). · Zbl 0167.02801
[287] H. Boseck, ”Über die Einlagerung topologischer Gruppen in Kompakte,” Arch. Math.,2, No. 3, 127–139 (1966). · Zbl 0216.09102
[288] H. Boseck and G. Czichowski, ”Connectedness properties of locally compact groups,” Math. Nachr.,89, 17–24 (1979). · Zbl 0416.22005
[289] H. Boseck and G. Czichowski, ”On the structure of connected locally compact groups,” Math. Nachr.,75, 247–254 (1976). · Zbl 0394.22006
[290] H. Boseck and G. Czichowski, ”Structure of connected locally compact groups,” in: General Topology and Its Relation to Modern Analysis and Algebra, IV, Part B, Prague (1977), pp. 63–67.
[291] W. Brauer, ”Über gewisse Verbände von Untergruppen pro-endlicher Gruppen,” Math. Z.,109, No. 3, 177–190 (1969). · Zbl 0174.30902
[292] W. Brauer, Zur Theorie der pro-endlicher Gruppen, Gessellschaft für Mathematik und Datenverarbeiterung, Bonn (1968).
[293] M. S. Brooks, S. A. Morris, and S. A. Saxon, ”Generating varieties of topological groups,” Proc. Edinburgh Math. Soc.,18, No. 3, 191–197 (1972/73). · Zbl 0263.22002
[294] J. R. Brown, ”Monothetic automorphisms of a compact Abelian group,” Lect. Notes Math.,318, 59–77 (1973). · Zbl 0281.22008
[295] L. J. Brown, ”Extensions of topological groups,” Pac. J. Math.,39, No. 1, 71–78 (1971). · Zbl 0241.22004
[296] L. J. Brown, ”Locally compact Abelian groups with trivial multiplier group,” J. Funct. Anal.,7, No. 1, 132–139 (1971). · Zbl 0213.03804
[297] L. J. Brown, ”Note on the open mapping theorem,” Pac. J. Math.,38, No. 1, 25–28 (1971). · Zbl 0224.22004
[298] L. J. Brown, ”Topologically complete groups,” Proc. Am. Math. Soc.,35, No. 2, 593–600 (1972). · Zbl 0251.22001
[299] Robert F. Brown, ”Fixed points of endomorphisms on compact groups,” Bull. Am. Math. Soc.,80, No. 2, 293–296 (1974). · Zbl 0281.57032
[300] Ronald Brown, ”Some nonprojective subgroups of free topological groups,” Proc. Am. Math. Soc.,52, 433–440 (1975). · Zbl 0278.22001
[301] Ronald Brown and J. P. L. Hardy, ”Subgroups of free topological groups and free topological products of topological groups,” J. London Math. Soc.,10, No. 4, 431–440 (1975). · Zbl 0304.22003
[302] Ronald Brown, P. J. Higgins, and S. A. Morris, ”Countable products and sums of lines and circles: their closed subgroups, quotients and duality properties,” Math. Proc. Cambridge Philos. Soc.,78, No. 1, 19–32 (1975). · Zbl 0304.22001
[303] Ronald Brown and S. A. Morris, ”Embeddings in contractible or compact objects,” Colloq. Math.,38, No. 2, 213–222 (1977/78). · Zbl 0389.22005
[304] R. M. Bryant, ”A question concerning CZ-groups,” J. Algebra,56, No. 1, 282–286 (1979). · Zbl 0402.20032
[305] J. S. Wilson, ”On locally finite CZ-groups,” Q. J. Math.,30, No. 119, 265–270 (1979). · Zbl 0413.20027
[306] S. Buźasi-Bodgyukevics, ”The dimension of uniform spaces in the theory of transformation groups,” in: Topics in Topology, North-Holland, Amsterdam (1974), pp. 135–137.
[307] S. S. Chen and S. A. Morris, ”Varieties of topological groups generated by Lie groups,” Proc. Edinburgh Math. Soc.,18, No. 1, 49–53 (1972/73). · Zbl 0224.22008
[308] S. S. Chen and R. W. Yoh, ”The category of generalized Lie groups,” Trans. Am. Math. Soc.,199, 281–294 (1974). · Zbl 0291.22003
[309] J. P. R. Christensen, ”Borel structures in groups and semigroups,” Math. Scand.,28, No. 1, 124–128 (1971). · Zbl 0217.08502
[310] C. Chou, ”Minimally weakly almost periodic groups,” J. Functional Analysis,36, No. 1, 1–17 (1980). · Zbl 0437.22007
[311] H. Chu, ”Compactification and duality of topological groups,” Trans. Am. Math. Soc.,123, No. 2, 310–324 (1966). · Zbl 0158.03002
[312] F. Clarke, ”The commutator subgroup of a free topological group need not be protective,” Proc Am. Math. Soc.,57, No. 2, 354–356 (1976). · Zbl 0353.22004
[313] W. W. Comfort and A. W. Hager, ”Uniform continuity in topological groups,” in: Symposia Mathematica, Vol. XVI, Academic Press, London (1975), pp. 269–290. · Zbl 0316.22002
[314] W. W. Comfort and G. L. Itzkowitz, ”Density character in topological groups,” Math. Ann.,226, No. 3, 223–227 (1977). · Zbl 0328.22010
[315] W. W. Comfort and K. A. Ross, ”Pseudocompactness and uniform continuity in topological groups,” Pac. J. Math.,16, No. 3, 483–496 (1966). · Zbl 0214.28502
[316] H. H. Corson and I. Glicksberg, ”Compactness in Hom (G, H),” Can. J. Math.,22, No. 1, 164–170 (1970). · Zbl 0203.55501
[317] L. Corwin, ”Some remarks on self-dual locally compact Abelian groups,” Trans. Am. Math. Soc.,148, No. 2, 613–622 (1970). · Zbl 0198.34903
[318] L. Corwin, ”Uniqueness of topology for the p-adic integers,” Proc Am. Math. Soc.,55, No. 2, 432–434 (1976). · Zbl 0323.22005
[319] A. W. Currier, ”Fixed points of automorphisms,” Proc. Am. Math. Soc.,54, 391–392 (1976). · Zbl 0317.54050
[320] D. O. Cutler, ”Completions of topological Abelian p-groups,” Acta Math. Acad. Sci. Hungar.,22, Nos. 3–4, 331–335 (1971/72). · Zbl 0246.22002
[321] G. Czichowski, ”The structure of connected LP-groups with finite-dimensional Lie algebra,” Math. Nachr.,62, 77–81 (1974). · Zbl 0291.22001
[322] J. Duans and K. H. Hofmann, ”Nilpotent groups and automorphisms,” Acta Sci. Math.,29, Nos. 3–4, 225–246 (1968).
[323] B. J. Day, ”On Pontryagin duality,” Glasgow Math. J.,20, No. 1, 15–24 (1979). · Zbl 0399.18006
[324] K. Delinić, ”On the ends of topological groups,” Glasnik Mat. Ser. III,11, No. 2, 217–229 (1976).
[325] A. Derighetti, ”Representative functions on topological groups,” Comment. Math. Helv.,44, No. 4, 476–483 (1969). · Zbl 0186.04605
[326] A. Derighetti, ”Über die Zusammenhangskomponente des Neutralelements einer kompakten Gruppe,” Math. Z.,109, No. 2, 107–108 (1969). · Zbl 0174.45003
[327] S. E. Dickson, ”Some remarks on local commutativity in topological groups,” Math. Student,35, Nos. 1–4, 21–27 [1967(1969)]. · Zbl 0182.04501
[328] S. Dierolf and U. Schwanengel, ”Examples of locally compact noncompact minimal topological groups,” Pac. J. Math.,82, No. 2, 349–355 (1979). · Zbl 0388.22002
[329] S. Dierolf and U. Schwanengel, ”Un exemple d’un groupe topologique q-minimal mais non précompact,” Bull. Sci. Math.,101, No. 3, 265–269 (1977). · Zbl 0375.22001
[330] S. Dierolf and S. Warken, ”Some examples in connection with Pontryagin’s duality theorem,” Arch. Math.,30, No. 6, 599–605 (1978). · Zbl 0373.22002
[331] W. E. Dietrich, Jr., ”Dense decompositions of locally compact groups,” Colloq. Math.,24, No. 2, 147–151 (1971/72).
[332] D. Dikranjan and I. Prodanov, ”Totally minimal topological groups,” Godishnik Sofiisk. Univ. Fak. Mat. Mekh.,69, 5–11 [1974–75(1979)]. · Zbl 0443.22002
[333] J. Dixmier, ”Quelques propriétés des groupes abeliens localement compacts,” Bull. Sci. Math.,81, No. 1, 38–48 (1957). · Zbl 0083.02301
[334] D. Z. Djoković, ”The union of compact subgroups of connected locally compact groups,” Math. Z.,158, No. 2, 99–105 (1978). · Zbl 0352.22004
[335] M. M. Dodson, ”Nilpotent topological groups,” J. London Math. Soc.,7, No. 2, 239–245 (1973). · Zbl 0267.22006
[336] D. Doitchinov, ”Minimal topological groups,” in: Topics in Topology, North-Holland, Amsterdam (1974), pp. 213–214.
[337] R. M. Dudley, ”Continuity of homomorphisms,” Duke Math. J.,28, No. 4, 587–594 (1961). · Zbl 0103.01702
[338] J. R. Durbin, ”On locally compact wreath products,” Pac. J. Math.,57, No. 1, 99–107 (1975). · Zbl 0293.22012
[339] M. Eisenberg, ”A note on positively expansive endomorphisms,” Math. Scand.,19, No. 2, 217–218 (1966). · Zbl 0147.27401
[340] M. Eisenberg, ”Embedding a transformation group in an automorphism group,” Proc. Am. Math. Soc.,23, No. 2, 276–281 (1969). · Zbl 0182.56802
[341] M. Eisenberg, ”Expansive transformation semigroups of endomorphisms,” Fund. Math.,59, No. 3, 313–321 (1966). · Zbl 0197.19504
[342] O. Endler, ”Inverse Limites von Funktoren auf Kategorien kompakter Räume, Existenz- und Konjugiertensätze für kompakte Gruppen,” Abh. Math. Sem. Univ. Hamburg,28, Nos. 1–2, 98–114 (1965). · Zbl 0136.29601
[343] J. Esterka, ”On the h-topology in groups,” Arch. Mat (Brno),10, No. 2, 103–110 [1974 (1975)]. · Zbl 0322.22002
[344] K. Faltings, ”Torsionkompakte Gruppen,” Arch. Math. (Basel),30, No. 4, 372–373 (1978). · Zbl 0363.20043
[345] K. Fan, ”On local connectedness of locally compact Abelian groups,” Math. Ann.,187, No. 2, 114–116 (1970). · Zbl 0185.07201
[346] T. H. Fay and B. V. Smith-Thomas, ”Remarks on the free product of two Hausdorff groups,” Arch. Math. (Basel),33, No. 1, 57–65 (1979). · Zbl 0405.22002
[347] P. Flor, ”Eine Bemerkung über lokalkompakte abelsche Gruppen,” Fund. Math.,101, No. 2, 135–136 (1978). · Zbl 0404.22002
[348] P. Flor, ”Über eine Kompaktifizierung topologischer Gruppen. II,” J. Reine Angew. Math.,237, 63–64 (1969). · Zbl 0175.02103
[349] P. Flor, ”Zur Bohr-Konvergenz von Folgen,” Math. Scand.,23, No. 1, 169–170 (1968). · Zbl 0182.36003
[350] L. Fuchs, ”Note on linearly compact Abelian groups,” J. Austral. Math. Soc.,9, Nos. 3–4, 433–440 (1969). · Zbl 0186.32902
[351] R. O. Fulp, ”Homological study of purity in locally compact groups,” Proc. London Math. Soc.,21, No. 3, 502–512 (1970). · Zbl 0222.22004
[352] R. O. Fulp, ”Splitting locally compact Abelian groups,” Michigan Math. J.,19, No. 1, 47–55 (1972). · Zbl 0229.22005
[353] R. O. Fulp and P. A. Griffith, ”Extensions of locally compact Abelian groups. I,” Trans. Am. Math. Soc.,154, 341–356 (1971). · Zbl 0216.34302
[354] R. O. Fulp and P. A. Griffith, ”Extensions of locally compact Abelian groups. II,” Trans. Am. Math. Soc.,154, 357–363 (1971). · Zbl 0216.34302
[355] J. Gait, ”The Baire set fixing property and uniform continuity in topological groups,” Math. Ann.,227, No. 1, 1–8 (1977). · Zbl 0328.22001
[356] J. Gait, ”The Baire set fixing property in topological groups,” Math. Ann.,200, No. 3, 235–240 (1973). · Zbl 0234.22001
[357] L. Gallardo and R. Schott, ”Un theoreme de structure pour les sous-groupes fermés, connexes des groupes extensions compactes de groupes nilpotents,” Lect. Notes Math.,739, 283–292 (1979). · Zbl 0416.22010
[358] J. R. Gard, ”Kernels of homomorphisms of topological groups,” J. London Math. Soc.,8, No. 3, 487–492 (1974). · Zbl 0295.22009
[359] H. Garland and M. Goto, ”Lattices and the adjoint group of a Lie group,” Trans. Am. Math. Soc.,124, No. 3, 450–460 (1966). · Zbl 0156.26302
[360] D. J. H. Garling, ”Tensor products of topological Abelian groups,” J. Reine Angew. Math.,223, 164–182 (1966). · Zbl 0145.03401
[361] D. Gildenhuys, W. Herfort, and L. Ribes, ”Results on profinite Frobenius groups,” R. Soc. Can. Math. Repts.,1, No. 5, 319–322 (1979). · Zbl 0453.20022
[362] D. Gildenhuys and L. Ribes, ”A Kurosh subgroup theorem for free pro-C-products of pro-C-groups,” Trans. Am. Math. Soc.,186, 309–329 (1973). · Zbl 0282.20027
[363] D. Gildenhuys and L. Ribes, ”Profinite groups and Boolean graphs,” J. Pure Appl. Algebra,12, No. 1, 21–47 (1978). · Zbl 0428.20018
[364] J. Ginsburg, M. Rajagopalan, and V. Saks, ”On the density character of closed subgroups,” Proc. Am. Math. Soc.,57, No. 1, 148–150 (1976). · Zbl 0346.22003
[365] S. Glasner, ”Topological dynamics and group theory,” Trans. Am. Math. Soc.,187, No. 1, 327–334 (1974). · Zbl 0251.54023
[366] K. Golema, ”Free products of compact general algebras,” Colloq. Math.,13, No. 2, 165–166 (1964/65). · Zbl 0135.02601
[367] M. Goto, ”Absolutely closed Lie groups,” Math. Ann.,204, No. 4, 337–341 (1973). · Zbl 0245.22009
[368] M. Goto, An Introduction to Topological Groups, Lecture Notes Series, No. 40, Matematisk Institut, Aarhus Universitet, Aarhus (1974).
[369] M. Goto, ”On the group of automorphisms of a locally compact connected group,” Mem. Am. Math. Soc., No. 14, 23–29 (1955). · Zbl 0064.25803
[370] D. L. Grant, ”Centralizers and normalizers in Hausdorff groups,” Math. Mag.,48, No. 4, 218 (1975). · Zbl 0312.22001
[371] D. L. Grant, ”Topological groups which satisfy an open mapping theorem,” Pac. J. Math.,68, No. 2, 411–423 (1977). · Zbl 0375.22002
[372] S. Grosser, O. Loos, and M. Moskowitz, ”Über Automorphismengruppen lokalkompakter Gruppen und Derivationen von Lie-Gruppen, ”Math. Z.,114, No. 5, 321–339 (1970). · Zbl 0184.05303
[373] S. Grosser, R. D. Mosak, and M. Moskowitz, ”Correction to ’Duality and harmonic analysis on central topological groups,”’ Nederl. Akad. Wetensch. Proc. Ser. A,76, No. 4, 375 (1973); Indag. Math.,35, No. 4, 375 (1973). · Zbl 0269.22008
[374] S. Grosser, R. D. Mosak, and M. Moskowitz, ”Duality and harmonic analysis on central topological groups. I,” Indag. Math.,35, No. 2, 65–77 (1973). · Zbl 0267.22008
[375] S. Grosser, R. D. Mosak, and M. Moskowitz, ”Duality and harmonie analysis on central topological groups. II,” Indag. Math.,35, No. 2, 78–91 (1973). · Zbl 0267.22008
[376] S. Grosser and M. Moskowitz, ”Compactness conditions in topological groups,” J. Reine Angew. Math.,246, 1–40 (1971). · Zbl 0219.22011
[377] S. Grosser and M. Moskowitz, ”On central topological groups,” Bull. Am. Math. Soc.,72, No. 5, 826–830 (1966). · Zbl 0145.03304
[378] S. Grosser and M. Moskowitz, ”On central topological groups,” Trans. Am. Math. Soc.,127, No. 2, 317–340 (1967). · Zbl 0145.03305
[379] S. Grosser and M. Moskowitz, ”Representation theory of central topological groups,” Bull. Am. Math. Soc.,72, No. 5, 831–837 (1966). · Zbl 0145.03304
[380] S. Grosser and M. Moskowitz, ”Representation theory of central topological groups,” Trans. Am. Math. Soc.,129, No. 3, 361–390 (1967). · Zbl 0189.32504
[381] L. C. Grove, ”A Frobenius-Wielandt theorem for compact groups,” Math. Nachr.,47, Nos. 1–6, 299–302 (1970). · Zbl 0191.02401
[382] L. C. Grove and L. J. Lardy, ”A finiteness condition for locally compact Abelian groups,” J. Austral. Math. Soc.,12, No. 1, 115–121 (1971). · Zbl 0207.03802
[383] K. W. Gruenberg, ”Protective profinite groups,” J. London Math. Soc.,42, No. 1, 155–165 (1967). · Zbl 0178.02703
[384] F. J. Grunewald, P. F. Pickel, and D. Segal, ”Finiteness theorems for polycyclic groups,” Bull. Am. Math. Soc. (N.S.),1, No. 3, 575–578 (1979). · Zbl 0408.20020
[385] Y. Guivarc’h, ”Croissance des groupes reśolubles localement compacts,” C. R. Acad. Sci. Paris,276, No. 16, A1099-A1100 (1973). · Zbl 0257.22006
[386] Y. Guivarc’h, ”Groupes de Lie á croissance polynomiale,” C. R. Acad. Sci. Paris,271, No. 4, A237-A239 (1970). · Zbl 0203.33004
[387] Y. Guivarc’h, ”Groupes de Lie à croissance polynomiale,” C. R. Acad. Sci. Paris,272, No. 26, A1695-A1696 (1971). · Zbl 0217.36904
[388] A. Hajnal and I. Juhász, ”A separable normal topological group need not be Lindelöf,” General Topology Appl.,6, No. 2, 199–205 (1976). · Zbl 0323.22001
[389] C. E. Hall, ”F-projective objects,” Proc. Am. Math. Soc.,26, No. 1, 193–195 (1970). · Zbl 0223.18002
[390] C. E. Hall, ”Protective topological groups,” Proc. Am. Math. Soc.,18, No. 3, 425–431 (1967). · Zbl 0146.25701
[391] G. Hansen, ”On quasitopological groups,” Rev. Univ. Nac. Tucumán,A21, Nos. 1–2, 253–256 (1971). · Zbl 0282.22001
[392] J. P. L. Hardy, ”The free topological group on a cell complex,” Bull. Austral. Math. Soc.,11, No. 3, 455–463 (1974). · Zbl 0283.54015
[393] J. P. L. Hardy and S. A. Morris, ”A note on free topological groupoids,” Math. Nachr.,77, 177–180 (1977). · Zbl 0355.22004
[394] J. P. L. Hardy and S. A. Morris, ”The free topological group on a simply connected space,” Proc. Am. Math. Soc.,55, No. 1, 155–159 (1976). · Zbl 0322.57028
[395] J. P. L. Hardy, S. A. Morris, and H. B. Thompson, ”Applications of the Stone-Čech compactification to free topological groups,” Proc. Am. Math. Soc.,55, No. 1, 160–164 (1976). · Zbl 0333.22001
[396] B. Hartley, ”Subgroups of finite index in profinite groups,” Math. Z.,168, No. 1, 71–76 (1979). · Zbl 0394.20020
[397] D. Hawley, ”Compact group topologies for R,” Proc. Am. Math. Soc.,30, No. 3, 566–572 (1971). · Zbl 0209.06001
[398] W. Hazod, ”Einige Sätze über unendlich teilbare Wahrscheinlichkeitsmasse auf lokalkompakten Gruppen,” Arch. Math. (Basel),26, No. 3, 297–312 (1975). · Zbl 0314.60008
[399] H. Helson and J.-P. Kahane, ”Compact groups with ordered duals. III,” J. London Math. Soc.,4, No. 3, 573–575 (1971/72). · Zbl 0227.43007
[400] R. W. Henrichs, ”On characters of subgroups,” Nederl. Akad. Wetensch. Proc. Ser. A,82, No. 3, 273–281 (1979). · Zbl 0447.43005
[401] R. W. Henrichs, ”Weak Frobenius reciprocity and compactness conditions in topological groups,” Pac. J. Math.,82, No. 2, 387–406 (1979). · Zbl 0387.22004
[402] W. N. Herfort, ”Compact torsion groups and finite exponent,” Arch. Math. (Basel),33, No. 5, 404–410 (1980). · Zbl 0445.22002
[403] W. Herfort, ”On the commutator subgroup of a nonconnected central group,” Monatsch. Math.,85, No. 1, 49–51 (1978). · Zbl 0374.22001
[404] W. Herfort, ”Untersuchung zu Kommutatorgruppen und Bohrkompaktifizierung inzentralen und kompakten Gruppen,” Monatsh. Math.,77, No. 3, 211–224 (1973). · Zbl 0264.22005
[405] W. Herfort, ”Untersuchungen zur Kommutatorgruppe in zentralen und kompakten topologischen Gruppen. II,” Monatsh. Math.,78, No. 4, 341–346 (1974). · Zbl 0287.22007
[406] E. Hewitt, ”A structural property of certain locally compact Abelian groups,” Duke Math. J.,32, No. 2, 237–238 (1965). · Zbl 0136.29602
[407] H. Heyer, Dualität Lokalkompakter Gruppen, Springer-Verlag, Berlin (1970). · Zbl 0202.14003
[408] H. Heyer, ”Groups with Chu duality,” Lect. Notes Math.,296, 181–215 (1973). · Zbl 0259.43009
[409] P. J. Higgins, ”Coproducts of topological Abelian groups,” J. Algebra,44, No. 1, 152–159 (1977). · Zbl 0398.22001
[410] P. J. Higgins, An Introduction to Topological Groups, Cambridge Univ. Press (1974). · Zbl 0288.22001
[411] P. J. Higgins, An Introduction to Topological Groups, London Math. Soc. Lecture Note Series, No. 15, London (1974). · Zbl 0288.22001
[412] G. Higman, ”Unrestricted free products, and varieties of topological groups,” J. London Math. Soc.,27, No. 1, 73–81 (1952). · Zbl 0046.02601
[413] Y. Hirschfeld, ”Nonstandard analysis and the compactification of groups,” Israel J. Math.,25, Nos. 1–2, 145–153 (1976). · Zbl 0348.22002
[414] G. Hochschild, La Structure des Groupes de Lie, Dunod, Paris (1968).
[415] G. Hochschild, The Structure of Lie Groups, Holden-Day, San Francisco (1965). · Zbl 0131.02702
[416] K. H. Hofmann, ”Categories with convergence, exponential functors, and the cohomology of compact Abelian groups,” Math. Z.,104, No. 2, 106–140 (1968). · Zbl 0153.34101
[417] K. H. Hofmann, ”Der Schursche Multiplikator topologischer Gruppen,” Math. Z.,79, No. 5, 389–421 (1962). · Zbl 0118.26902
[418] K. H. Hofmann, Introduction to the Theory of Compact Groups, Parts I and II, Tulane Univ. Dept. Math., New Orleans (1968 and 1969).
[419] K. H. Hofmann, ”Sur la décomposition semidirecte des groupes compacts connexes,” in: Symposia Mathematica, Vol. XVI, Academic Press, London (1975), pp. 471–476.
[420] K. H. Hofmann, ”Tensor produkte lokal kompakter abelscher Gruppen,” J. Reine Angew. Math.,216, Nos. 3–4, 134–149 (1964). · Zbl 0128.03001
[421] K. H. Hofmann, ”Über das Nilradikal lokal kompakter Gruppen,” Math. Z.,91, No. 3, 206–215 (1966). · Zbl 0138.02903
[422] K. H. Hofmann, ”Zerfällung topologischer Gruppen,” Math. Z.,84, No. 1, 16–37 (1964). · Zbl 0122.03806
[423] K. H. Hofmann and P. S. Mostert, ”Die topologische Struktur des Raumes der Epimorphismen kompakter Gruppen,” Arch. Math.,16, No. 3, 191–196 (1965). · Zbl 0135.06603
[424] K. H. Hofmann and P. S. Mostert, ”One dimensional coset spaces,” Math. Ann.,178, No. 1, 44–52 (1968). · Zbl 0159.03202
[425] K. H. Hofmann and P. S. Mostert, ”Splitting in topological groups,” Mem. Am. Math. Soc., No. 43 (1963). · Zbl 0163.02705
[426] P. Holm, ”On the Bohr compactification,”156, No. 1, 34–46 (1964). · Zbl 0121.03705
[427] P. Holm, ”Erratum to ’On the Bohr compactification,”’ Math. Ann.,197, No. 1, 86 (1972). · Zbl 0232.22004
[428] R. C. Hooper, ”Locally compact subgroups of metrizable topological Abelian groups,” Proc. Am. Math. Soc.,57, No. 1, 159–164 (1976). · Zbl 0328.22002
[429] R. C. Hooper, ”Many topological Abelian groups have dense divisible subgroups,” Proc. Am. Math. Soc.,23, No. 3, 555–558 (1969). · Zbl 0186.32903
[430] C. H. Houghton, ”Ends of locally compact groups and their coset spaces,” J. Austral. Math. Soc.,17, No. 3, 274–284 (1974). · Zbl 0289.22005
[431] E. J. Howard, ”A note on second category topological groups,” Am. Math. Monthly,77, No. 5, 501–502 (1970). · Zbl 0194.33801
[432] M. Huber and W. Meier, ”Linearly compact groups,” J. Pure Appl. Algebra,16, No. 2, 167–182 (1980). · Zbl 0432.22001
[433] S. N. Hudson, ”On connectivity properties of finite-dimensional groups,” Proc. Am. Math. Soc.,23, No. 1, 68–72 (1969). · Zbl 0184.05301
[434] S. N. Hudson, ”On the topology and geometry of arcwise connected, finite-dimensional groups,” Pac J. Math.,82, No. 2, 429–450 (1979). · Zbl 0387.22001
[435] R. Hughes, ”Compactness in locally compact groups,” Bull. Am. Math. Soc.,79, No. 1, 122–123 (1973). · Zbl 0263.22006
[436] A. Hulanicki, ”Compact Abelian groups and extensions of Haar measures,” Rozpr. Mat., No. 38 (1964). · Zbl 0119.03301
[437] A. Hulanicki, ”Isomorphic embeddings of free products of compact groups,” Colloq. Math.,16, 235–241 (1967). · Zbl 0147.27303
[438] D. C. Hunt and S. A. Morris, ”Free subgroups of free topological groups,” Lect. Notes Math.,372, 377–387 (1974). · Zbl 0289.22001
[439] D. C. Hunt, S. A. Morris, and A. J. van der Poorten, ”Closed subgroups of products of reals,” Bull. London Math. Soc.,7, No. 2, 124–128 (1975). · Zbl 0305.22003
[440] R. P. Hunter and L. W. Anderson, ”A remark on finite dimensional compactifications,” Duke Math. J.,38, No. 3, 605–607 (1971). · Zbl 0227.22001
[441] T. Husain, Introduction to Topological Groups, Saunders, Philadelphia (1966). · Zbl 0136.29402
[442] T. Husain, ”On a closed graph theorem for topological groups,” Proc. Jpn. Acad.,44, No. 6, 446–448 (1968). · Zbl 0164.34202
[443] M. F. Hutchinson, ”Tall profinite groups,” Bull. Austral. Math. Soc.,18, No. 3, 421–428 (1978). · Zbl 0374.22004
[444] G. L. Itzkowitz, ”Continuous measures, Baire category, and uniform continuity in topological groups,” Pac. J. Math.,54, No. 2, 115–125 (1974). · Zbl 0316.43001
[445] G. L. Itzkowitz, ”The existence of homomorphisms in compact connected Abelian groups,” Proc. Am. Math. Soc.,19, No. 1, 214–216 (1968). · Zbl 0159.31602
[446] G. L. Itzkowitz, ”Uniform structure in topological groups,” Proc. Am. Math. Soc.,57, No. 2, 363–366 (1976). · Zbl 0329.22005
[447] G. J. O. Jameson, ”Allied subsets of topological groups and linear spaces,” Proc. London Math. Soc.,18, No. 4, 653–690 (1968). · Zbl 0162.44202
[448] S. Janakiraman and M. Rajagopalan, ”Topologies in locally compact groups. II,” Illinois J. Math.,17, No. 2, 177–197 (1973). · Zbl 0265.22009
[449] M. Jarden, ”Normal automorphisms of free profinite groups,” J. Algebra,62, No. 1, 118–123 (1980). · Zbl 0432.20024
[450] M. Jarden and J. Ritter, ”Normal automorphisms of absolute Galois groups of p-adic fields,” Duke Math. J.,47, No. 1, 47–56 (1980). · Zbl 0439.20022
[451] J. W. Jenkins, ”A characterization of growth in locally compact groups,” Bull. Am. Math. Soc.,79, No. 1, 103–106 (1973). · Zbl 0262.22004
[452] J. W. Jenkins, ”Amenable subsemigroups of a locally compact group,” Proc Am. Math. Soc.,25, No. 4, 766–770 (1970). · Zbl 0201.03404
[453] J. W. Jenkins, ”Growth of connected locally compact groups,” J. Functional Analysis,12, No. 1, 113–127 (1973). · Zbl 0247.43001
[454] E. Joachim, ”Dualitätstheorie der nicht-kommutativen Gruppen mit Normalteilertopologie,” Math. Z.,111, No. 1, 46–52 (1969). · Zbl 0177.04602
[455] J.-R. Joly, ”Groupes procycliques,” C. R. Acad. Sci. Paris,261, No. 1, 13–16 (1965). · Zbl 0147.01703
[456] R. R. Kallman, ”A uniqueness result for topological groups,” Proc. Am. Math. Soc.,54, 439–440 (1976). · Zbl 0317.22001
[457] R. R. Kallman, ”The topology of compact simple Lie groups is essentially unique,” Adv. Math.,12, No. 4, 416–417 (1974). · Zbl 0273.22009
[458] E. Kaniuth, ”A note on reduced duals of certain locally compact groups,” Math. Z.,150, No. 2, 189–194 (1976). · Zbl 0318.22007
[459] E. Kaniuth, ”Topology in duals on SIN-groups,” Math. Z.,134, No. 1, 67–80 (1973). · Zbl 0255.22009
[460] T. Kasuga, ”On the isomorphism of topological groups,” Proc. Jpn. Acad.,29, No. 8, 435–438 (1953). · Zbl 0052.02503
[461] E. Katz, ”Free products in the category of kW-groups,” Pac. J. Math.,59, No. 2, 493–495 (1975). · Zbl 0322.22001
[462] E. T. Kehlet, ”On extensions of locally compact groups and unitary groups,” Math. Scand.,45, No. 1, 35–49 (1979). · Zbl 0448.22005
[463] B. Kendirli, ”An example of a topological group,” Rocz. Pol. Tow. Mat., Ser. 1, No. 15, 1–2 (1971). · Zbl 0246.22001
[464] M. A. Khan, ”A note on t-pure extensions of locally compact groups,” J. Sci. Biol. Sec. Univ. Karachi,2, No. 2, 297–299 (1973).
[465] M. A. Khan, ”A notion of purity in locally compact groups,” J. Sci. Biol. Sec. Univ. Karachi,2, No. 1, 128–130 (1973).
[466] M. A. Khan, ”Generalized locally compact locally cyclic groups,” J. Natur. Sci. Math.,16, Nos. 1–2, 61–68 (1976). · Zbl 0378.22008
[467] J. O. Kiltinen, ”Infinite Abelian groups are highly topologizable,” Duke Math. J.,41, No. 1, 151–154 (1974). · Zbl 0282.22002
[468] A. Kleppner, ”Multipliers on Abelian groups,” Math. Ann.,158, No. 1, 11–34 (1965). · Zbl 0135.06604
[469] Z. Kominek, ”On the sum and difference of two sets in topological vector spaces,” Fund. Math.,71, No. 2, 163–169 (1971). · Zbl 0214.37403
[470] F. Križanič, Topological Groups [in Slovenian], Durštvo Matematikov, Fizikov in Astronomov SR Slovenije, Ljubljana (1974).
[471] W. Krull, ”Sobre ciertas categorias de grupos con topologia de subgrupos,” Publ. Sem. Mat. Garcia Galdeano, No. 8, 5–15, 16–26 (1966).
[472] W. Krull, ”Zur Theorie der Gruppen mit Untergruppentopologie,” Abh. Math. Sem. Univ. Hamburg,28, Nos. 1–2, 50–97 (1965). · Zbl 0136.27302
[473] F. Kümmich, ”Quasinormalität in topologischen Gruppen,” Monatsh. Math.,87, No. 3, 241–245 (1979). · Zbl 0408.22010
[474] F. Kümmich, ”Topologisch quasihamiltonsche Gruppen,” Arch. Math. (Basel),29, No. 4, 392–397 (1977). · Zbl 0383.22001
[475] A. Lakshmi, ”Topological wreath products,” J. Austral. Math. Soc.,5, No. 3, 396–400 (1965). · Zbl 0132.27602
[476] R. Lalithambal, ”On theorems of Thornton,” Bull. Austral. Math. Soc.,6, No. 2, 211–212 (1972). · Zbl 0237.22001
[477] P.-F. Lam, ”On expansive transformation groups,” Trans. Am. Math. Soc.,150, No. 1, 131–138 (1970). · Zbl 0207.54703
[478] W. F. Lamartin, ”On the foundations of k-group theory,” Rozpr. Mat., No. 146 (1977). · Zbl 0394.22001
[479] A. Lavis, ”Extensions de groupes topologiques commutatifs,” Bull. Soc. R. Sci. Liège,45, Nos. 9–10, 396–400 (1976). · Zbl 0353.22002
[480] A. Lavis, ”Extensions de groupes topologiques comutatifs et prolongements d’endomorphismes partiels ouverts,” Bull. Soc. R. Sci. Liège,30, Nos. 3–4, 107–113 (1970). · Zbl 0215.11602
[481] A. Lavis, ”Prolongements d’endomorphismes partiels ouverts dans les groupes topologiques commutatifs,” Acad. R. Belg. Bull. Cl. Sci.,56, No. 3, 296–303 (1970). · Zbl 0215.11603
[482] A. Lavis, ”Prolongements d’endomorphismes partiels ouverts dans les groupes topologiques commutatifs de Hausdorff,” Bull. Soc. R. Sci. Liège,42, Nos. 9–10, 408–412 (1973). · Zbl 0277.22002
[483] A. Lavis, ”Prolongement simultané d’une famille d’endomorphismes partiels ouverts dans les groupes topologiques commutatifs,” Bull. Soc. R. Sci. Liège,45, Nos. 11–12, 533–537 (1976). · Zbl 0352.22001
[484] W. Lawton, ”The structure of compact connected groups which admit an expansive automorphism,” Lect. Notes Math.,318, 182–196 (1973). · Zbl 0273.54028
[485] D. H. Lee, ”Group extensions by totally disconnected groups,” Duke Math. J.,38, No. 1, 205–210 (1971). · Zbl 0223.22001
[486] D. H. Lee, ”On deformations of homomorphisms of locally compact groups,” Trans. Am. Math. Soc.,191, 353–361 (1974). · Zbl 0295.22010
[487] D. H. Lee, ”On the homomorphisms of locally compact groups,” Proc. Am. Math. Soc.,37, No. 1, 246–254 (1973). · Zbl 0262.22002
[488] D. H. Lee, ”On torsion subgroups of Lie groups,” Proc. Am. Math. Soc.,55, No. 2, 424–426 (1976). · Zbl 0326.22009
[489] D. H. Lee, ”Reductivity and the automorphism group of locally compact groups,” Trans. Am. Math. Soc.,221, No. 2, 379–389 (1976). · Zbl 0332.22011
[490] D. H. Lee, ”Supplements for the identity component in locally compact groups,” Math. Z.,104, No. 1, 28–49 (1968). · Zbl 0185.07104
[491] D. H. Lee, ”The adjoint group of Lie groups,” Pac. J. Math.,32, No. 1, 181–186 (1970). · Zbl 0194.05503
[492] D. H. Lee and T.-S. Wu, ”On CA topological groups,” Duke Math. J.,37, No. 3, 515–521 (1970). · Zbl 0219.22009
[493] D. H. Lee and T.-S. Wu, ”On conjugacy of homomorphisms of topological groups,” Illinois J. Math.,13, No. 4, 694–699 (1969). · Zbl 0184.05203
[494] D. H. Lee and T.-S. Wu, ”On conjugacy of homomorphisms of topological groups. II,” Illinois J. Math.,14, No. 3, 409–413 (1970). · Zbl 0219.22008
[495] D. H. Lee and T.-S. Wu, ”On existence of compact open normal subgroups of O-dimensional groups,” Proc. Am. Math. Soc.,26, No. 3, 526–528 (1970). · Zbl 0204.35303
[496] D. H. Lee and T.-S. Wu, ”On the group of automorphisms of a finite-dimensional topological group,” Michigan Math. J.,15, No. 3, 321–324 (1968). · Zbl 0167.30002
[497] J. C. Lennox and J. S. Wilson, ”On products of subgroups in polycyclic groups,” Arch. Math.,33, No. 4, 305–309 (1979). · Zbl 0426.20026
[498] H. Leptin and L. Robertson, ”Every locally MAP group is unimodular,” Proc. Am. Math. Soc.,19, No. 5, 1079–1082 (1968). · Zbl 0182.36002
[499] M. D. Levin, ”The automorphism group of a locally compact Abelian group,” Acta Math.,127, Nos. 3–4, 259–278 (1971). · Zbl 0223.22004
[500] Teng-sun Liu and A. van Rooij, ”Invariant means on a locally compact group,” Monatsh. Math.,78, No. 4, 356–359 (1974). · Zbl 0296.43003
[501] J. R. Liukkonen, ”Dual spaces of groups with precompact conjugacy classes,” Trans. Am. Math. Soc.,180, 85–108 (1973). · Zbl 0292.22008
[502] C. Loewner, Theory of Continuous Groups, MIT Press, Cambridge, Mass. (1971). · Zbl 0224.22001
[503] J. Mack, S. A. Morris, and E. T. Ordman, ”Free topological groups and the projective dimension of a locally compact Abelian group,” Proc. Am. Math. Soc.,40, No. 1, 303–308 (1973). · Zbl 0263.22001
[504] L. Magnin and J. Simon, ”Lie algebras associated with topological nilpotent groups,” Rep. Math. Phys.,8, No. 2, 171–180 (1975). · Zbl 0324.22001
[505] G. De Marco and A. Orsatti, ”Complete linear topologies on Abelian groups,” in: Symposia Mathematica, Vol. XIII, Academic Press, London (1974), pp. 153–161. · Zbl 0303.20038
[506] D. Marxen, ”Neighborhoods of the identity of the free Abelian topological groups,” Math. Slovaca,26, No. 3, 247–256 (1976). · Zbl 0345.22001
[507] I. Gy. Maurer and M. Szilágyi, ”Sur les produits filtrés de certains groupes topologiques,” Rend. Sem. Mat. Univ. Padova,43, 247–259 (1970). · Zbl 0236.22001
[508] W. Maxones and H. Rindler, ”Lokalkompakter Gruppen in denen jede abgeschlossene nicht normale Untergruppe offen ist,” Anz. Osterreich. Akad. Wiss. Math.-Naturwiss. Kl.,113, Nos. 1–14, 170–172 (1976). · Zbl 0346.22008
[509] J. R. McMullen, ”Compact torsion groups,” Lect. Notes Math.,372, 453–462 (1974).
[510] D. Miličic, ”Representations of almost connected groups,” Proc. Am. Math. Soc.,47, No. 2, 517–518 (1975). · Zbl 0295.22011
[511] C. Brandt Miller and M. Rajagopalan, ”Topologies in locally compact groups. III,” Proc. London Math. Soc.,31, No. 1, 55–78 (1975). · Zbl 0305.22006
[512] P. Milnes, ”Continuity properties of compact right topological groups,” Math. Proc. Cambridge Philos. Soc.,86, No. 3, 427–435 (1979). · Zbl 0432.22003
[513] J. Mioduszewski, ”Direct limits of topological spaces and groups,” Colloq. Math.,12, No. 1, 15–22 (1964). · Zbl 0141.20303
[514] C. C. Moore, ”Amenable subgroups of semisimple groups and proximal flows,” Israel J. Math.,34, Nos. 1–2, 121–138 (1979). · Zbl 0431.22014
[515] C. C. Moore, ”Extensions and low dimensional cohomomogy theory of locally compact groups. I,” Trans. Am. Math. Soc.,113, No. 1, 40–63 (1964). · Zbl 0131.26902
[516] C. C. Moore, ”Extensions and low dimensional cohomology theory of locally compact groups. II,” Trans. Am. Math. Soc.,113, No. 1, 64–86 (1964). · Zbl 0131.26902
[517] C. C. Moore, ”Group extensions and cohomology for locally compact groups. III,” Trans. Am. Math. Soc.,221, No. 1, 1–33 (1976). · Zbl 0366.22005
[518] C. C. Moore, ”Group extensions and cohomology for locally compact groups. IV,” Trans. Am. Math. Soc.,221, No. 1, 35–58 (1976). · Zbl 0366.22006
[519] C. C. Moore, ”Groups with finite dimensional irreducible representations,” Trans. Am. Math. Soc.,166, 401–410 (1972). · Zbl 0236.22010
[520] S. A. Morris, ”Connected and locally connected closed subgroups of products of locally compact Abelian groups,” J. Proc. R. Soc. New South Wales,109, Nos. 3–4, 123–124 (1976). · Zbl 0354.22004
[521] S. A. Morris, ”Free compact Abelian groups,” Mat. Casopis,22, No. 2, 141–147 (1972). · Zbl 0235.22012
[522] S. A. Morris, ”Free products of topological groups,” Bull Austral. Math. Soc.,4, No. 1, 17–29 (1971). · Zbl 0199.34503
[523] S. A. Morris, ”Lie groups in varieties of topological groups,” Colloq. Math.,30, No. 2, 229–235 (1974). · Zbl 0301.22004
[524] S. A. Morris, ”Local compactness and free products of topological groups,” J. Proc. R. Soc. New South Wales,108, Nos. 1–2, 52–53 (1975). · Zbl 0346.22001
[525] S. A. Morris, ”Local compactness and local invariance of free products of topological groups,” Colloq. Math.,35, No. 1, 21–27 (1976). · Zbl 0346.22002
[526] S. A. Morris, ”Locally compact Abelian groups and the variety of topological groups generated by the reals,” Proc. Am. Math. Soc.,34, No. 1, 290–292 (1972). · Zbl 0222.22005
[527] S. A. Morris, ”Locally compact groups and {\(\beta\)}-varieties of topological groups,” Fund. Math.,78, No. 1, 23–26 (1973). · Zbl 0223.22005
[528] S. A. Morris, ”On varieties of topological groups generated by solvable groups,” Colloq. Math.,25, No. 2, 225–226 (1972). · Zbl 0218.22010
[529] S. A. Morris, Pontryagin Duality and the Structure of Locally Compact Abelian Groups, Cambridge Univ. Press, Cambridge (1977). · Zbl 0446.22006
[530] S. A. Morris, ”Quotient groups of topological groups with no small subgroups,” Proc. Am. Math. Soc.,31, No. 2, 625–626 (1972). · Zbl 0209.06004
[531] S. A. Morris, ”Remarks on varieties of topological groups,” Mat. Casopis,24, No. 1, 7–14 (1974). · Zbl 0275.22002
[532] S. A. Morris, ”Varieties of topological groups,” Bull. Austral. Math. Soc.,1, No. 2, 145–160 (1969). · Zbl 0172.31404
[533] S. A. Morris, ”Varieties of topological groups. II,” Bull. Austral. Math. Soc.,2, No. 1, 1–13 (1970). · Zbl 0179.04904
[534] S. A. Morris, ”Varieties of topological groups. III,” Bull. Austral. Math. Soc.,2, No. 2, 165–178 (1970). · Zbl 0186.32901
[535] S. A. Morris, ”Varieties of topological groups and left adjoint functors,” J. Austral. Math. Soc.,16, No. 2, 220–227 (1973). · Zbl 0274.22003
[536] S. A. Morris, ”Varieties of topological groups generated by maximally almost periodic groups,” Colloq. Math.,28, No. 1, 47–50 (1973). · Zbl 0236.22006
[537] S. A. Morris, ”Varieties of topological groups generated by solvable and nilpotent groups,” Colloq. Math.,27, No. 2, 211–213 (1973). · Zbl 0263.22005
[538] S. A. Morris and N. Kelly, ”Varieties of topological groups generated by groups with invariant compact neighborhoods of the identity,” Mat. Casopis,25, No. 3, 207–210 (1975). · Zbl 0311.22004
[539] S. A. Morris and P. Nickolas, ”Locally compact group topologies on an algebraic free product of groups,” J. Algebra,38, No. 2, 393–397 (1976). · Zbl 0321.22009
[540] S. A. Morris, E. T. Ordman, and H. B. Thompson, ”The topology of free products of topological groups,” Lect. Notes Math.,372, 504–515 (1974). · Zbl 0289.22002
[541] S. A. Morris and A. J. van der Poorten, ”Extremally disconnected topological groups,” J. Proc. R. Soc. New South Wales,107, Nos. 3–4, 114–115 (1974). · Zbl 1370.22001
[542] S. A. Morris and H. B. Thompson, ”Free topological groups with no small subgroups,” Proc. Am. Math. Soc.,46, No. 3, 431–437 (1974). · Zbl 0294.22001
[543] S. A. Morris and H. B. Thompson, ”Invariant metrics on free topological groups,” Bull. Austral. Math. Soc.,9, No. 1, 83–88 (1973). · Zbl 0255.22002
[544] M. Moskowitz, ”Homological algebra in locally compact Abelian groups,” Trans. Am. Math. Soc.,127, No. 3, 361–404 (1967). · Zbl 0149.26302
[545] M. Moskowitz, ”On proreductive groups,” Proc. Cambridge Philos. Soc.,76, No. 2, 401–406 (1974). · Zbl 0302.22012
[546] P. Nickolas, ”A Schreier theorem for free topological groups,” Bull. Austral. Math. Soc.,13, No. 1, 121–127 (1975). · Zbl 0306.22002
[547] P. Nickolas, ”Reflexivity of topological groups,” Proc. Am. Math. Soc.,65, No. 1, 137–141 (1977). · Zbl 0369.22002
[548] P. Nickolas, ”Subgroups of the free topological group on [0, 1],” J. London Math. Soc.,12, No. 2, 199–205 (1976). · Zbl 0318.22002
[549] J. W. Nienhuys, ”A solenoidal and monothetic minimally almost-periodic group,” Fund. Math.,73, No. 2, 167–169 (1971). · Zbl 0237.22002
[550] J. W. Nienhuys, ”Construction of group topologies on Abelian groups,” Fund. Math.,75, 101–116 (1972). · Zbl 0213.03503
[551] J. W. Nienhuys, ”Corrections to ’Not locally compact monothetic groups,”’ Indag. Math.,33, No. 1, 59 (1971). · Zbl 0214.04502
[552] J. W. Nienhuys, ”Not locally compact monothetic groups. I,” Indag. Math.,32, No. 4, 295–310 (1970). · Zbl 0214.04502
[553] J. W. Nienhuys, ”Not locally compact monothetic groups. II,” Indag. Math.,32, No. 4, 311–326 (1970). · Zbl 0214.04502
[554] J. W. Nienhuys, ”Some examples of monothetic groups,” Fund. Math.,88, No. 2, 163–171 (1975). · Zbl 0302.22004
[555] H.-D. Niessen, ”Verallgemeinerte Graphensätze für topologische Gruppen,” Math. Nachr.,47, Nos. 1–6, 261–278 (1970). · Zbl 0215.40502
[556] R. Nillsen, ”Compactification of products,” Mat. Casopis,19, No. 4, 316–323 (1969). · Zbl 0201.55305
[557] N. Noble, ”k-groups and duality,” Trans. Am. Math. Soc.,151, No. 2, 551–561 (1970). · Zbl 0229.22012
[558] J. Novák, ”On convergence groups,” Czechoslovak Math. J.,20, No. 3, 357–374 (1970). · Zbl 0217.08504
[559] E. C. Nummela, ”K-groups generated by K-spaces,” Trans. Am. Math. Soc.,201, 279–289 (1975). · Zbl 0292.22003
[560] E. C. Nummela, ”On epimorphisms of topological groups,” General Topology Appl.,9, No. 2, 155–167 (1978). · Zbl 0388.18001
[561] E. C. Nummela, ”The projective dimension of a compact Abelian group,” Proc. Am. Math. Soc.,38, No. 3, 452–456 (1973). · Zbl 0255.22007
[562] N. Oler, ”Note on a theorem of Weil-Abels,” Mathematika,18, No. 2, 185–187 (1971). · Zbl 0237.22007
[563] N. Oler, ”On subgroups of the first kind,” Math. Scand.,20, No. 1, 91–92 (1967). · Zbl 0189.02703
[564] N. Oler, ”Spaces of closed subgroups of a connected Lie group,” Glasgow Math. J.,14, No. 1, 77–79 (1973). · Zbl 0266.22009
[565] N. Oler, ”The connectedness of fundamental sets,” J. London Math. Soc.,43, No. 1, 111–114 (1968). · Zbl 0157.06601
[566] B. C. Oltikar and L. Ribes, ”On prosupersolvable groups,” Pac. J. Math.,77, No. 1, 183–188 (1978). · Zbl 0406.20027
[567] B. C. Oltikar, ”On the Frattini subgroup of free products of profinite groups,” Commun. Algebra,7, No. 3, 313–325 (1973). · Zbl 0405.20032
[568] H. Omori, ”Homomorphic images of Lie groups,” J. Math. Soc. Jpn.,18, No. 1, 97–117 (1966). · Zbl 0136.29801
[569] E. T. Ordman, ”Free k-groups and free topological groups,” General Topology Appl.,5, No. 3, 205–219 (1975). · Zbl 0306.22003
[570] E. T. Ordman, ”Free products of topological groups which are k{\(\omega\)}-spaces,” Trans. Am. Math. Soc.,191, 61–73 (1974). · Zbl 0287.22003
[571] E. T. Ordman, ”Free products of topological groups with equal uniformities. I,” Colloq. Math.,31, No. 1, 37–43 (1974). · Zbl 0261.22001
[572] E. T. Ordman and S. A. Morris, ”Almost locally invariant topological groups,” J. London Math. Soc.,9, No. 1, 30–34 (1974/75). · Zbl 0289.22003
[573] A. Orsatti, ”Sui gruppi abeliani ridotti che ammettono una unica topologia compatta,” Rend. Sem. Mat. Univ. Padova,43, 341–347 (1970). · Zbl 0248.22002
[574] A. Orsatti, ”Una caratterizzazione dei gruppi abeliani compatti o localmente compatti nella topologia naturale,” Rend. Sem. Mat. Univ. Padova,39, 219–225 (1967).
[575] A. B. Paalman-de Miranda, ”A note on W-groups,” Math. Systems Theory,5, No. 2, 168–171 (1971). · Zbl 0223.22007
[576] T. W. Palmer, ”Classes of nonabelian, noncompact, locally compact groups,” Rocky Mountain J. Math.,8, No. 4, 683–741 (1978). · Zbl 0396.22001
[577] E. Perlt and K. Strambach, ”Die Norm lokal kommpakter Gruppen,” Arch. Math. (Basel),24, No. 4, 355–365 (1973). · Zbl 0293.22011
[578] J. Peters, ”Groups with completely regular primitive dual space,” J. Functional Anal.,20, No. 2, 136–148 (1975). · Zbl 0308.43006
[579] H. LeRoy Peterson, ”Discontinuous characters and subgroups of finite index,” Pac. J. Math.,44, No. 2, 683–691 (1973). · Zbl 0263.22004
[580] P. F. Pickel, ”Fitting subgroups and profinite completions of polycyclic groups,” J. Algebra,42, No. 1, 41–45 (1976). · Zbl 0343.20019
[581] J.-P. Pier, Cas d’existence s’un sous-groupe distingúe ouvert compact dans un voisinage quelconque de l’élément neutre d’un groupe topologique. Publ. Sci. Tech. Ministère de l’Air, Notes Tech. No. 128, Paris (1963), pp. 85–88.
[582] P. Plaumann, ”Automorphismengruppen diskreter Gruppen als topologische Gruppen,” Arch. Math. (Basel),29, No. 1, 32–33 (1977). · Zbl 0365.22008
[583] P. Plaumann, ”Erweiterungen kompakter Gruppen durch abelsche Gruppen,” Math. Z.,99, No. 2, 123–140 (1967). · Zbl 0146.25605
[584] P. Plaumann, ”Fixelemente von Automorphismen nulldimensionaler abelscher Gruppen,” Math. Z.,129, No. 4, 279–286 (1972). · Zbl 0256.22014
[585] P. Plaumann, ”Klassen zusammenhängender Gruppen,” Arch. Math. (Basel),19, No. 2, 113–117 (1968). · Zbl 0174.05505
[586] P. Plaumann, ”Lokal kompakte Gruppen mit gleichmässig beschränkten Konjugiertenklassen,” Arch. Math. (Basel),26, No. 6, 574–580 (1975). · Zbl 0328.22015
[587] D. Poguntke, ”Epimorphisms of compact groups are onto,” Proc. Am. Math. Soc.,26, No. 3, 503–504 (1970). · Zbl 0204.35403
[588] D. Poguntke, ”The coproduct of two circles,” General Topology Appl.,6, No. 2, 127–144 (1976). · Zbl 0321.22005
[589] D. Poguntke, ”Zwei Klassen lokalkompakter maximal fastperiodischer Gruppen,” Monatsh. Math.,81, No. 1, 15–40 (1976). · Zbl 0322.22007
[590] H. Pommer, ”Complete lattices of subgroups in compact groups,” Arch. Math. (Basel),22, No. 2, 205–208 (1971). · Zbl 0216.34401
[591] H. Pommer, ”Kompakte Subnormalteiler,” Math. Z.,118, No. 1, 50–55 (1970). · Zbl 0194.33703
[592] H. Pommer, ”Projektive Limites kompakter Räume,” Topology,10, No. 1, 5–8 (1971). · Zbl 0184.26501
[593] H. Pommer, ”Subnormalität in topologischen Gruppen,” Math. Z.,114, No. 3, 194–200 (1970). · Zbl 0179.32902
[594] H. Pommer, ”Verbände vertauschbarer Untergruppen,” Math. Z.,118, No. 2, 103–106 (1970). · Zbl 0194.05402
[595] H. Poppe, ”Einige Bemerkungen über den Raum der abgeschlossenen Mengen,” Fund. Math.,59, No. 2, 159–169 (1966). · Zbl 0139.40404
[596] I. Prodanov, ”Precompact minimal group topologies and p-adic numbers,” Godishnik Sofiisk. Univ. Mat. Fak.,66, 249–266 [1971–72 (1974)]. · Zbl 0329.22002
[597] I. Prodanov, ”Precompact minimal topologies on Abelian groups,” Dokl. Bolg. Akad. Nauk,26, No. 10, 1287–1288 (1973). · Zbl 0323.22004
[598] I. Prodanov, ”Some minimal group topologies are precompact,” Math. Ann.,227, No. 2, 117–125 (1977). · Zbl 0343.22001
[599] M. Rajagopalan, ”Structure of monogenic groups,” Illinois J. Math.,12, No. 2, 205–214 (1968). · Zbl 0241.22013
[600] M. Rajagopalan, ”Topologies in locally compact groups,” Math. Ann.,176, No. 3, 169–180 (1968). · Zbl 0174.05601
[601] M. Rajagopalan and B. Schreiber, ”Ergodic automorphisms and affine transformations of locally compact groups,” Pac. J. Math.,38, No. 1, 167–176 (1971). · Zbl 0213.31302
[602] M. Rajagopalan and T. Soundararajan, ”On self-dual LCA-groups,” Bull Am. Math. Soc.,73, No. 6, 985–986 (1967). · Zbl 0166.29502
[603] M. Rajagopalan and T. Soundararajan, ”Structure of self-dual torsion-free metric LCA groups,” Fund. Math.,65, No. 3, 309–316 (1969). · Zbl 0195.04603
[604] M. Rajagopalan and H. Subrahmanian, ”Dense subgroups of locally compact groups,” Colloq. Math.,35, No. 2, 289–292 (1976). · Zbl 0331.22005
[605] T. G. Raghavan and J. L. Reilly, ”On the continuity of group operations,” Indian J. Pure Appl. Math.,9, No. 8, 747–752 (1978). · Zbl 0384.22001
[606] R. T. Ramsay, ”Groups with equal uniformities,” Can. J. Math.,21, No. 3, 655–659 (1969). · Zbl 0194.05302
[607] R. T. Ramsay, ”On compactification and structure of topological groups,” Proc. Am. Math. Soc.,20, No. 2, 585–589 (1969). · Zbl 0202.02801
[608] G. Rangan, ”Nonarchimedean metrizability of topological groups,” Fund. Math.,68, No. 2, 179–182 (1970). · Zbl 0198.04904
[609] J. B. Reade, ”A theorem on cardinal numbers associated with inductive limits of locally compactAbelian groups,” Proc Cambridge Philos. Soc.,61, No. 1, 69–74 (1965). · Zbl 0136.29604
[610] J. B. Reade, ”On cardinal numbers associated with locally compact Abelian groups,” Proc. Cambridge Philos. Soc.,61, No. 1, 75–79 (1965). · Zbl 0142.26602
[611] G. A. Reid, ”On sequential convergence in groups,” Math. Z.,102, No. 3, 227–235 (1967). · Zbl 0153.04302
[612] L. Ribes, ”Productos amalgamados de grupos pronilpotentes,” Rev. Mat. Hisp.-Am.,33, No. 3, 133–138 (1973).
[613] N. W. Rickert, ”Amenable groups and groups with the fixed point property,” Trans. Am. Math. Soc.,127, No. 2, 221–232 (1967). · Zbl 0152.40203
[614] N. W. Rickert, ”Arcs in locally compact groups,” Math. Ann.,172, No. 3, 222–228 (1967). · Zbl 0239.22009
[615] N. W. Rickert, ”Locally compact topologies for groups,” Trans. Am. Math. Soc.,126, No. 2, 225–235 (1967). · Zbl 0189.32404
[616] N. W. Rickert, ”Some properties of locally compact groups,” J. Austral. Math. Soc.,7, No. 4, 433–454 (1967). · Zbl 0167.30103
[617] M. A. Rieffel, ”On extensions of locally compact groups,” Am. J. Math.,88, No. 4, 871–880 (1966). · Zbl 0147.01203
[618] D. A. Robbie, ”Homogeneity or otherwise for certain morphism spaces,” Jahresber. Deutsch. Math.-Verein.,74, No. 3, 143–146 (1972). · Zbl 0239.22008
[619] L. C. Robertson, ”A note on the structure of Moore groups,” Bull. Am. Math. Soc.,75, No. 3, 594–599 (1969). · Zbl 0202.02901
[620] L. C. Robertson, ”Connectivity, divisibility, and torsion,” Trans. Am. Math. Soc.,128, No. 3, 482–505 (1967). · Zbl 0153.04401
[621] L. C. Robertson and B. M. Schreiber, ”The additive structure of integer groups and p-adic number fields,” Proc. Am. Math. Soc.,19, No. 6, 1453–1456 (1968). · Zbl 0185.07105
[622] L. C. Robertson and T. W. Wilcox, ”Splitting in MAP groups,” Proc. Am. Math. Soc.,33, No. 2, 613–618 (1972). · Zbl 0245.22006
[623] D. W. Roeder, ”A characterization of unitary duality,” Trans. Am. Math. Soc.,148, No. 1, 129–135 (1970). · Zbl 0194.33803
[624] D. W. Roeder, ”Category theory applied to Pontryagin duality,” Pac J. Math.,52, No. 2, 519–527 (1974). · Zbl 0245.22005
[625] D. W. Roeder, ”Functorial characterizations of Pontryagin duality,” Trans. Am. Math. Soc.,154, 151–175 (1971). · Zbl 0216.34303
[626] J. Rosenblatt, ”A distal property of groups and the growth of connected locally compact groups,” Mathematika,26, No. 1, 94–98 (1979). · Zbl 0402.22002
[627] J. M. Rosenblatt, ”Totally disconnected compact metric groups,” Fund. Math.,94, No. 2, 97–106 (1977). · Zbl 0356.22005
[628] K. A. Ross, ”Closed subgroups of locally compact Abelian groups,” Fund. Math.,56, No. 2, 241–244 (1964). · Zbl 0132.27701
[629] S. Rothman, ”The von Neumann kernel and minimally almost periodic groups,” Trans. Am. Math. Soc.,259, No. 2, 401–421 (1980). · Zbl 0436.22005
[630] J. Saint-Raymond, ”Groupes topologiques localement abéliens,” C. R. Acad. Sci. Paris,275, No. 15, A695-A696 (1972). · Zbl 0238.22001
[631] S. Scheinberg, ”Homomorphism and isomorphism of Abelian groups,” Can. J. Math.,26, No. 6, 1515–1519 (1974). · Zbl 0259.22002
[632] G. Schlichting, ”Topologische Gruppen mit endlichen Klassen konjugierter Elemente,” Math. Z.,142, No. 1, 15–17 (1975). · Zbl 0296.22006
[633] J. Schochetman, ”Dimensionality and the duals of certain locally compact groups,” Proc. Am. Math. Soc.,26, No. 3, 514–520 (1970). · Zbl 0202.41003
[634] J. Schochetman, ”Nets of subgroups and amenability,” Proc. Am. Math. Soc.,29, No. 2, 397–403 (1972). · Zbl 0215.40601
[635] U. Schwanengel, ”An example of a q-minimal precompact topological group containing a nonminimal closed normal subgroup,” Manuscr. Math.,27, No. 3, 323–327 (1979). · Zbl 0403.22001
[636] K. J. Sharpe, ”Compatible group topologies,” Proc Am. Math. Soc.,53, No. 1, 237–239 (1975). · Zbl 0295.22002
[637] K. J. Sharpe, ”Relationships between group topologies,” Bull. Austral. Math. Soc.,13, No. 1, 149–151 (1975). · Zbl 0307.22004
[638] K. J. Shape, ”Two properties of RN with a compact group topology,” Proc Am. Math. Soc.,34, No. 1, 267–269 (1972).
[639] S. Shelah, ”On a Kurosh problem: Jonsson groups; Frattini subgroups and untopologized groups,” Inst. Math., Hebrew Univ., Jerusalem (1976).
[640] M. Singer, ”One parameter subgroups and nonstandard analysis,” Manuscr. Math.,18, No. 1, 1–13 (1976). · Zbl 0328.22011
[641] K.-Y. C. Sit, ”Compactness of certain homogeneous spaces of locally compact groups,” Proc. Am. Math. Soc.,55, No. 1, 170–174 (1976). · Zbl 0319.22006
[642] K.-Y. L. Sit, ”On centralizers of generalized uniform subgroups of locally compact groups,” Trans. Am. Math. Soc.,201, 133–146 (1975). · Zbl 0261.22007
[643] J. H. Smith, ”On products of profinite groups,” Illinois J. Math.,13, No. 4, 680–688 (1969). · Zbl 0182.35001
[644] T. Soundararajan, ”The topological group of the p-adic integers,” Publ. Math. Debrecen,16, Nos. 1–4, 75–78 (1969). · Zbl 0209.06002
[645] R. M. Stephenson, Jr., ”Minimal topological groups,” Math. Ann.,192, No. 3, 193–195 (1971). · Zbl 0206.31601
[646] T. E. Stewart, ”Uniqueness of the topology in certain compact groups,” Trans. Am. Math., Soc.,97, No. 3, 487–494 (1960). · Zbl 0096.02104
[647] A. Stieglitz, ”Chabauty- and Weil-Räume topologischer Gruppen,” Math. Nachr.,85, 215–233 (1978). · Zbl 0404.22008
[648] K. Strambach, ”Eine Bemerkung zur Nilpotenz lokal kompakter Gruppen,” Monatsh. Math.,79, No. 2, 147–150 (1975). · Zbl 0295.22008
[649] P. Strantzalos, ”Kompaktheitseigenschaften der Gruppe der Isometrien metrischer Räume,” Arch. Math. (Basel),33, No. 1, 66–75 (1979). · Zbl 0421.54027
[650] L. J. Sulley, ”A note on B- and Br-complete topological Abelian groups,” Proc. Cambridge Philos. Soc.,66, No. 2, 275–279 (1969). · Zbl 0179.33001
[651] L. J. Sulley, ”On countable inductive limits of locally compact Abelian groups,” J. London Math. Soc.,5, No. 4, 629–637 (1972). · Zbl 0243.22002
[652] T. Sund, ”Duality theory for locally compact groups with precompact conjugacy classes. II: The dual space,” Trans. Am. Math. Soc.,224, No. 2, 313–321 (1976). · Zbl 0304.22007
[653] Ch. Sunyach, ”Compléments au théorème du graphe fermé,” C. R. Acad. Sci. Paris,267, No. 5, A215-A216 (1968).
[654] Ch. Sunyach, ”Complétude et théorème du graphe fermé,” Lect. Notes in Math.,116, 168–174 (1970).
[655] S. Swierczkowski, ”Finite subgroups of locally compact groups,” Colloq. Math.,21, No. 1, 53–54 (1970). · Zbl 0194.05401
[656] S. Swierczkowski, ”Topologies in free algebras,” Proc. London Math. Soc.,14, No. 55, 566–576 (1964). · Zbl 0123.09902
[657] J. Szenthe, ”On the topological characterization of Lie groups and transitive Lie group actions,” in: Topics in Topology, North-Holland, Amsterdam (1974), pp. 585–588.
[658] R. Takamatsu, ”On polythetic groups,” Proc. Jpn. Acad.,52, No. 1, 17–20 (1976). · Zbl 0342.22006
[659] M. Takesaki, ”Duality and von Neumann algebras,” Bull. Am. Math. Soc.,77, No. 4, 553–557 (1971). · Zbl 0238.46062
[660] M. Takesaki and N. Tatsuuma, ”Duality and subgroups,” Ann. Math.,93, No. 2, 344–354 (1971). · Zbl 0201.45503
[661] M. Takesaki and N. Tatsuuma, ”Duality and subgroups. II,” J. Functional Anal.,11, No. 2, 184–190 (1972). · Zbl 0245.46090
[662] N. Tatsuuma, ”A duality theorem for locally compact groups,” J. Math. Kyoto Univ.,6, No. 2, 187–293 (1967). · Zbl 0184.17402
[663] K. F. Taylor, ”The type structure of the regular representation of a locally compact group,” Math. Ann.,222, No. 3, 211–224 (1976). · Zbl 0318.43005
[664] W. Taylor, ”Varieties of topological algebras,” J. Austral. Math. Soc.,23, No. 2, 207–241 (1977). · Zbl 0367.46048
[665] V. Tharmaratnam, ”Endomorphism near-ring of a relatively free group,” Math. Z.,113, No. 2, 119–135 (1970). · Zbl 0186.34301
[666] B. V. S. Thomas, ”Free topological groups,” General Topology Appl.,4, No. 1, 51–72 (1974). · Zbl 0276.54044
[667] B. V. S. Thomas, ”Free topological groups,” Lect. Notes Math.,378, 517–524 (1974).
[668] B. V. S. Thomas, ”On the coproduct of the topological groupsQ andZ 2,” Lect. Notes Math.,719, 371–375 (1979).
[669] H. B. Thompson, ”A remark on free topological groups with no small subgroups,” J. Austral. Math. Soc.,18, No. 4, 482–484 (1974). · Zbl 0297.22001
[670] M. C. Thornton, ”Torsion topological groups with minimal open sets,” Bull. Austral. Math. Soc.,5, No. 1, 55–59 (1971). · Zbl 0216.34201
[671] S. Tomášek, ”Some remarks on tensor products,” Comment. Math. Univ. Carolin.,6, No. 1, 85–96 (1965). · Zbl 0151.17303
[672] S. Tomášek, ”On tensor products of Abelian groups,” Comment. Math. Univ. Carolin.,6, No. 1, 73–83 (1965). · Zbl 0132.02005
[673] K. Tsuchida, ”Note on the connected locally compact groups,” Sci. Rep. Fac. Literat. Sci. Hirosaki Univ.,2, No. 2, 10–12 (1955). · Zbl 0068.25607
[674] N. Th. Varopoulos, ”A theorem on cardinal numbers associated with a locally compact Abelian group,” Proc. Cambridge Philos. Soc.,60, No. 4, 701–704 (1964). · Zbl 0136.29603
[675] N. Th. Varopoulos, ”A theorem on the continuity of homomorphisms of locally compact groups,” Proc. Cambridge Philos. Soc.,60, No. 3, 449–463 (1964). · Zbl 0121.03704
[676] R. Venkataraman, ”A characterization of Pontryagin duality,” Math. Z.,149, No. 2, 109–119 (1976). · Zbl 0313.43011
[677] R. Venkataraman, ”Compactness in Abelian topological groups,” Pac. J. Math.,57, No. 2, 591–595 (1975). · Zbl 0308.22009
[678] R. Venkataraman, ”Extensions of Pontryagin duality,” Math. Z.,143, No. 2, 105–112 (1975). · Zbl 0287.22009
[679] R. Venkataraman, ”Interval of group topologies satisfying Pontryagin duality,” Math. Z.,155, No. 2, 143–149 (1977). · Zbl 0339.43004
[680] R. Venkataraman, ”On locally compact Abelian groups which are topologically pure in their Bohr compactifications,” Fund. Math.,69, No. 2, 103–107 (1970). · Zbl 0209.06003
[681] J. de Vries, ”Cardinal functions on topological groups,” Rep. Math. Cent., No. 12 (1975). · Zbl 0244.54004
[682] J. de Vries, ”Pseudocompactness and the Stone-Čech compactification for topological groups,” Nieuw. Arch. Wisk.,23, No. 1, 35–48 (1975). · Zbl 0296.22003
[683] J. de Vries, ”Topics in the theory of topological transformation groups,” Math. Centre Tracts, No. 116, 291–304 (1979).
[684] S. P. Wang, ”Compactness properties of topological groups,” Trans. Am. Math. Soc.,154, 301–314 (1971). · Zbl 0224.22005
[685] S. P. Wang, ”Compactness properties of topological groups. II,” Duke Math. J.,39, No. 2, 243–251 (1972). · Zbl 0244.22004
[686] S. P. Wang, ”Compactness properties of topological groups. III,” Trans. Am. Math. Soc.,209, No. 482, 399–418 (1975). · Zbl 0322.22005
[687] S. P. Wang, ”On a compactness property of topological groups,” Trans. Am. Math. Soc.,187, No. 1, 83–88 (1974). · Zbl 0334.22003
[688] S. P. Wang, ”On density properties of certain subgroups of locally compact groups,” Duke Math. J.,43, No. 3, 561–578 (1976). · Zbl 0336.22003
[689] S. P. Wang, ”On L-subgroups of locally compact groups,” Adv. Math.,28, No. 2, 89–100 (1978). · Zbl 0386.22001
[690] S. P. Wang, ”On the limit of subgroups in a group,” Am. J. Math.,92, No. 3, 708–724 (1970). · Zbl 0223.22008
[691] S. P. Wang, ”The automorphism group of a locally compact group,” Duke Math. J.,36, No. 2, 277–282 (1969). · Zbl 0205.04201
[692] T. Watanabe, ”On the solvable groups of Galois type,” Mem. Defense Acad. Jpn.,16, No. 1, 1–6 (1976). · Zbl 0333.20028
[693] D. Wigner, ”Inverse limits and the completeness of quotient groups,” Michigan Math. J.,22, No. 2, 165–170 (1975). · Zbl 0312.22002
[694] D. Wigner, ”On the automorphism group of a Lie group,” Proc. Am. Math. Soc.,45, No. 1, 140–143 (1974). · Zbl 0293.22017
[695] H. J. Wilcox, ”Dense subgroups of compact groups,” Proc. Am. Math. Soc.,28, No. 2, 578–580 (1971). · Zbl 0215.40503
[696] H. J. Wilcox, ”Pseudocompact groups,” Pac. J. Math.,19, No. 2, 365–379 (1966). · Zbl 0143.04802
[697] T. W. Wilcox, ”A note on groups with relatively compact conjugacy classes,” Proc Am. Math. Soc.,42, No. 1, 326–329 (1974). · Zbl 0279.22005
[698] T. W. Wilcox, ”On the structure of maximally almost periodic groups,” Bull. Am. Math. Soc.,73, No. 5, 732–734 (1967). · Zbl 0167.30004
[699] T. W. Wilcox, ”On the structure of maximally almost periodic groups,” Math. Scand.,23, No. 2, 221–232 (1968). · Zbl 0186.05002
[700] R. J. Wille, ”The existence of a topological group with automorphism group C7,” Q. J. Math.,18, No. 69, 53–57 (1967). · Zbl 0147.27304
[701] R. J. Wille, ”Topological groups with prescribed automorphism groups,” Indag. Math.,25, No. 2, 218–224 (1963). · Zbl 0114.02203
[702] T. S. Wu, ”A certain type of locally compact totally disconnected topological groups,” Proc. Am. Math. Soc.,23, No. 3, 613–614 (1969). · Zbl 0191.02402
[703] T. S. Wu, ”Expansive automorphisms in compact groups,” Math. Scand.,18, No. 1, 23–24 (1966). · Zbl 0143.04803
[704] T. S. Wu, ”Locally compact, totally disconnected, solvable groups,” Michigan Math. J.,17, No. 1, 69–72 (1970). · Zbl 0198.04903
[705] T. S. Wu, ”On (CA) topological groups. II,” Duke Math. J.,38, No. 3, 513–519 (1971). · Zbl 0219.22010
[706] T. S. Wu, ”On the topology of a dual space,” Michigan Math. J.,16, No. 3, 265–268 (1969). · Zbl 0186.04701
[707] T. S. Wu and Y.-K. Yu, ”Compactness conditions in topological groups,” Michigan Math. J.,22, No. 3, 269–280 (1976). · Zbl 0326.22002
[708] T. S. Wu and Y.-K. Yu, ”Compactness properties of topological groups,” Michigan Math., J.,19, No. 4, 299–313 (1972). · Zbl 0244.22003
[709] J. S. Yang, ”Semidirect and free products of groups with equal uniformities,” Tamkang J. Math.,4, No. 2, 155–166 (1973). · Zbl 0287.22001
[710] Y. K. Yu, ”Topologically semisimple groups,” Proc. London Math. Soc.,33, No. 3, 515–534 (1976). · Zbl 0351.22001
[711] W. Zelazko, Topological Groups and Algebras, Warszawa (1968). · Zbl 0162.18504
[712] W. Zelazko, ”On the Burnside problem for locally compact groups,” in: Symposia Mathematica, Vol. 16, Academic Press, London (1975), pp. 409–416. · Zbl 0347.22004
[713] D. Zerling, ”(CA) topological groups,” Proc. Am. Math. Soc.,54, 345–351 (1976). · Zbl 0317.22004
[714] D. Zerling, ”Dense subgroups of Lie groups. II,” Trans. Am. Math. Soc.,246, 419–428 (1978). · Zbl 0404.22010
[715] D. Zerling, ”Some theorems on (CA) analytic groups,” Trans. Am. Math. Soc.,205, 181–192 (1975). · Zbl 0275.22014
[716] D. Zerling, ”Some theorems on (CA) analytic groups. II,” Tohoku Math. J.,29, No. 3, 325–333 (1977). · Zbl 0364.22003
[717] R. Zobel, ”Gruppentopologien auf nichtabelschen abzählbaren Gruppen,” Manuscr. Math.,14, No. 3, 207–216 (1974). · Zbl 0292.22007
[718] L. Zsidó ”A structure theorem for l.c.a. compactly generated groups,” Stud. Cerc. Mat.,19, No. 9, 1395–1398 (1967). · Zbl 0231.22004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.