×

zbMATH — the first resource for mathematics

On the fundamental theorem of the theory of relativity. (English) Zbl 1368.83016
Summary: A new formulation of what may be called the “fundamental theorem of the theory of relativity” is presented and proved in \((3+1)\)-space-time, based on the full classification of special transformations and the corresponding velocity addition laws. A system of axioms is introduced and discussed leading to the result, and a study is made of several variants of that system. In particular the status of the group axiom is investigated with respect to the condition of the two-way isotropy of light. Several issues which are ignored or misunderstood in the literature are emphasized.

MSC:
83C05 Einstein’s equations (general structure, canonical formalism, Cauchy problems)
83F05 Relativistic cosmology
83E05 Geometrodynamics and the holographic principle
78A40 Waves and radiation in optics and electromagnetic theory
PDF BibTeX Cite
Full Text: DOI arXiv
References:
[1] Almström, H, Derivation of the Lorentz transformation without use of light, J. Phys. A (Proc. Phys. Soc.) ser., 2, 331-333, (1968)
[2] Anderson, R; Vetharaniam, I; Stedman, GE, Conventionality of synchronization, gauge dependence and test theories of relativity, Phys. Rep., 295, 93-180, (1998)
[3] Bacry, H; Lévy-Leblond, J-M, Possible kinematics, J. Math. Phys., 9, 1605-14, (1968) · Zbl 0162.58606
[4] Berzi, V; Gorini, V, Reciprocity principle and the Lorentz transformations, J. Math. Phys., 10, 1518-24, (1969) · Zbl 0179.58502
[5] Birkhoff, G.: Hydrodynamics—A Study in Logic, Fact and Similitude, Revised Edition edn. Princeton University Press, Princeton (1960) · Zbl 0095.20303
[6] Blaine Lawson, H.: The Theory of Gauge Fields in Four Dimensions. American Mathematical Society, Providence (1985) · Zbl 0597.53001
[7] Bogoslovsky, G.Y.: A Special-Relativistic Theory of the Locally Anisotropic Space-Time. I: The Metric and Group of Motions of the Anisotropic Space of Events, Il Nuovo Cimento, 40 B, 1977, 99-115; II: Mechanics and Electrodynamics in the Anisotropic Space, 40 B, 1977, 116-34 · Zbl 0113.20401
[8] Cattaneo, C, Sui postulati comuni alla cinematica classica e alla cinematica relativistica, Lincei - Rend. Sc. fis. mat. e nat., 24, 526-532, (1958) · Zbl 0099.42605
[9] D’Inverno, R.: Introducing Einstein’s Relativity. Cambridge University Press, Cambridge (1992) · Zbl 0776.53046
[10] Drake, E, Deduction from a kinematic principle of relativity, Am. J. Phys., 34, 899-900, (1966)
[11] Einstein, A, Zur elektrodynamik bewegter Körper, Ann. Phys., 17, 891-921, (1905) · JFM 36.0920.02
[12] Einstein, A, Kosmologische betrachtungen zur allgemeinen relativitätstheorie, Preuss. Akad. Wiss. Sitz. P, 1, 142-152, (1917) · JFM 46.1295.01
[13] Eisenberg, LJ, Necessity of the linearity of relativistic transformations between inertial systems, Am. J. Phys., 35, 649, (1967)
[14] Fock, V.: The Theory of Space, Time and Gravitation. Pergamon Press, New York (1959) · Zbl 0085.42301
[15] Frank, P; Rothe, H, Ueber die transformation der raum-zeit koordinaten von ruhenden auf bewegte systeme, Ann. Phys., 34, 825-855, (1911) · JFM 42.0722.02
[16] Frank, P; Rothe, H, Zur herleitung der lorentztransformation, Physik. Zeitschr., 13, 750-3, (1912) · JFM 43.0786.06
[17] Gomes, LR, Sur la déduction des formules de Lorentz, Lincei Rend. Sc. fis. mat. e nat., 21, 433-437, (1935) · Zbl 0011.37605
[18] Jeffers, J, Lost theorems of geometry, Am. Math. Mon., 107, 800-812, (2000) · Zbl 0984.51005
[19] Lalan, V, La cinématique et la théorie des groupes, Compt. Rend., 203, 1491-3, (1936) · JFM 62.1506.02
[20] Roy, E, Sur LES formules de Lorentz, Compt. Rend., 202, 794-5, (1936) · Zbl 0013.23305
[21] Lévy-Leblond, J-M, One more derivation of the Lorentz transformation, Am. J. Phys., 44, 271-7, (1976)
[22] Mamone-Capria, M, On the conventionality of simultaneity in special relativity, Found. Phys., 31, 775-818, (2001)
[23] Mamone-Capria, M, Spatial directions, anisotropy and special relativity, Found. Phys., 31, 1375-1397, (2011) · Zbl 1252.83008
[24] Mamone-Capria, M, Simultaneity as an invariant equivalence relation, Found. Phys., 42, 1365-1383, (2012) · Zbl 1257.83005
[25] Mansouri, R; Sexl, R, A test theory of special relativity: I. simultaneity and clock synchronization, Gen. Relat. Gravit., 8, 497-513, (1977)
[26] Mermin, ND, Relativity without light, Am. J. Phys., 52, 247-265, (1984)
[27] Mermin, N.D.: Boojums All the Way Through. Cambridge University Press, Cambridge (1990)
[28] Mimura, Y; Iwatsuki, T, On the linearity of the Lorentz transformation, J. Sci. Hiroshima Univ., A1, 111-116, (1931) · JFM 57.1172.03
[29] Mitvalský, V, Special relativity without the postulate of constancy of light, Am. J. Phys., 34, 825, (1966)
[30] Møller, C.: The Theory of Relativity, 2nd edn. Oxford University Press, Oxford (1972) · Zbl 0047.20602
[31] Narliker, VV, The restriction to linearity of the Lorentz transformation, Proc. Camb. Phil. Soc., 28, 460-2, (1932) · Zbl 0005.35801
[32] Pal, PB, Nothing but relativity, Eur. J. Phy., 24, 315-319, (2003) · Zbl 1046.83002
[33] Pars, LA, The Lorentz transformation, Phil. Mag., 42, 249-58, (1921) · JFM 48.1329.02
[34] Pauli, W.: Theory of Relativity. Dover, New York (1958) · Zbl 0101.43403
[35] Poincaré, H, Sur la dynamique de l’électron, Rend. Circ. Matem. Palermo, 21, 129-176, (1906) · JFM 37.0886.01
[36] Schwartz, HM, Axiomatic deduction of the general Lorentz transformations, Am. J. Phys., 30, 697-707, (1962) · Zbl 0113.20401
[37] Selleri, F, Noninvariant one-way velocity of light, Found. Phys., 5, 641-64, (1996)
[38] Selleri, F; Conti, L (ed.); Mamone Capria, M (ed.), Teorie alternative alla relatività e natura del tempo, 213-247, (1999), Naples
[39] Severi, F, The principles of the relativity theory deduced from the common sense, Proc. Phys-Math. Soc. Jpn., 18, 257-267, (1936) · Zbl 0014.42103
[40] Stiegler, KD, Sur le principe de la constance de la vitesse de la lumière, Compt. Rend., 234, 1250-1252, (1952) · Zbl 0047.20603
[41] Tangherlini, F.R.: An Introduction to the General Theory of Relativity, Nuovo Cimento, Supplemento, 20, ser. X, 1-86 · Zbl 0097.42205
[42] Terletskii, Y.P.: Paradoxes in the Theory of Relativity. Plenum, New York (1968)
[43] Ignatowski, WA, Einige allgemeine bemerkungen sum relativitätsprinzip, Verh. Desutsch. Phys. Ges., 12, 788-96, (1910)
[44] Ignatowski, WA, Einige allgemeine bemerkungen sum relativitätsprinzip, Phys. Z., 11, 972-976, (1910)
[45] Weinstock, R, Derivation of the Lorentz transformation equations without a linearity assumption, Am. J. Phys., 32, 260-4, (1964) · Zbl 0117.22402
[46] Weinstock, R, New approach to special relativity, Am. J. Phys., 33, 640-645, (1965) · Zbl 0142.45802
[47] Weyl, H.: Space-Time-Matter, 4th German edition, 1922; transl. Dover, New York (1952) · JFM 48.1059.12
[48] Whitrow, G.J.: A derivation of the Lorentz formulae. Quart. J. Math. 4, 161-72 (1933) · Zbl 0007.33001
[49] Whittaker, E.: From Euclid to Eddington. Cambridge University Press, Cambridge (1949) · Zbl 0039.24303
[50] Zhang, Y.Z.: Special Relativity and Its Experimental Foundations. World Scientific, Singapore (1997)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.