×

Sturm 3-ball global attractors 3: examples of Thom-Smale complexes. (English) Zbl 1396.37036

Summary: Examples complete our trilogy on the geometric and combinatorial characterization of global Sturm attractors \(\mathcal{A}\) which consist of a single closed 3-ball. The underlying scalar PDE is parabolic, \[ u_t=u_{xx}+f(x,u,u_x), \] on the unit interval \(0<x<1\) with Neumann boundary conditions. Equilibria \(v_t=0\) are assumed to be hyperbolic.
Geometrically, we study the resulting Thom-Smale dynamic complex with cells defined by the fast unstable manifolds of the equilibria. The Thom-Smale complex turns out to be a regular cell complex. In the first two papers we characterized 3-ball Sturm attractors \(\mathcal{A}\) as 3-cell templates \(\mathcal{C}\). The characterization involves bipolar orientations and hemisphere decompositions which are closely related to the geometry of the fast unstable manifolds.
An equivalent combinatorial description was given in terms of the Sturm permutation, alias the meander properties of the shooting curve for the equilibrium ODE boundary value problem. It involves the relative positioning of extreme 2-dimensionally unstable equilibria at the Neumann boundaries \(x=0\) and \(x=1\), respectively, and the overlapping reach of polar serpents in the shooting meander.
In the present paper we apply these descriptions to explicitly enumerate all 3-ball Sturm attractors \(\mathcal{A}\) with at most 13 equilibria. We also give complete lists of all possibilities to obtain solid tetrahedra, cubes, and octahedra as 3-ball Sturm attractors with 15 and 27 equilibria, respectively. For the remaining Platonic 3-balls, icosahedra and dodecahedra, we indicate a reduction to mere planar considerations as discussed in our previous trilogy on planar Sturm attractors.

MSC:

37D15 Morse-Smale systems
35B41 Attractors
05C90 Applications of graph theory
57N60 Cellularity in topological manifolds
35K59 Quasilinear parabolic equations
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] S. Angenent, The Morse-Smale property for a semi-linear parabolic equation, J. Diff. Eqns., 62, 427-442 (1986) · Zbl 0581.58026 · doi:10.1016/0022-0396(86)90093-8
[2] S. Angenent, The zero set of a solution of a parabolic equation, J. Reine Angew. Math., 390, 79-96 (1988) · Zbl 0644.35050 · doi:10.1515/crll.1988.390.79
[3] V. I. Arnold, A branched covering \(\begin{document}CP^2 \to S^4\end{document} \), hyperbolicity and projective topology, Sib. Math. J., 29, 717-726 (1988) · Zbl 0721.57003 · doi:10.1007/BF00970265
[4] V. I. Arnold; M. I. Vishik, Some solved and unsolved problems in the theory of differential equations and mathematical physics, Russ. Math. Surv., 44, 157-171 (1989) · Zbl 0703.35002
[5] A. V. Babin and M. I. Vishik, Attractors of Evolution Equations, North Holland, Amsterdam, 1992. · Zbl 0778.58002
[6] J. -M. Bismut and W. Zhang, An extension of a theorem by Cheeger and Müller. With an appendix by François Laudenbach, Astérisque, 205, Soc. Math. de France, 1992.
[7] R. Bott, Morse theory indomitable, Public. Math. I.H. É.S., 68, 99-114 (1988) · Zbl 0685.58009
[8] P. Brunovský; B. Fiedler, Connecting orbits in scalar reaction diffusion equations, Dynamics Reported, 1, 57-89 (1988) · Zbl 0679.35047
[9] P. Brunovský; B. Fiedler, Connecting orbits in scalar reaction diffusion equations Ⅱ: The complete solution, J. Diff. Eqns., 81, 106-135 (1989) · Zbl 0699.35144 · doi:10.1016/0022-0396(89)90180-0
[10] N. Chafee; E. Infante, A bifurcation problem for a nonlinear parabolic equation, J. Applicable Analysis, 4, 17-37 (1974) · Zbl 0296.35046 · doi:10.1080/00036817408839081
[11] V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics, Colloq. AMS, Providence, 2002. · Zbl 0986.35001
[12] A. Eden, C. Foias, B. Nicolaenko and R. Temam, Exponential Attractors for Dissipative Evolution Equations, Wiley, Chichester, 1994. · Zbl 0842.58056
[13] B. Fiedler, Global attractors of one-dimensional parabolic equations: Sixteen examples, Tatra Mountains Math. Publ., 4, 67-92 (1994) · Zbl 0814.35056
[14] B. Fiedler (ed.), Handbook of Dynamical Systems, 2, Elsevier, Amsterdam, 2002.
[15] B. Fiedler; C. Rocha, Heteroclinic orbits of semilinear parabolic equations, J. Diff. Eqns., 125, 239-281 (1996) · Zbl 0849.35056 · doi:10.1006/jdeq.1996.0031
[16] B. Fiedler; C. Rocha, Realization of meander permutations by boundary value problems, J. Diff. Eqns., 156, 282-308 (1999) · Zbl 0935.34018 · doi:10.1006/jdeq.1998.3532
[17] B. Fiedler; C. Rocha, Orbit equivalence of global attractors of semilinear parabolic differential equations, Trans. Amer. Math. Soc., 352, 257-284 (2000) · Zbl 0932.37065 · doi:10.1090/S0002-9947-99-02209-6
[18] B. Fiedler; C. Rocha, Connectivity and design of planar global attractors of Sturm type, Ⅱ: Connection graphs, J. Diff. Eqns., 244, 1255-1286 (2008) · Zbl 1179.35069 · doi:10.1016/j.jde.2007.09.015
[19] B. Fiedler; C. Rocha, Connectivity and design of planar global attractors of Sturm type, Ⅰ: Bipolar orientations and Hamiltonian paths, J. Reine Angew. Math., 635, 71-96 (2009) · Zbl 1201.37102 · doi:10.1515/CRELLE.2009.076
[20] B. Fiedler; C. Rocha, Connectivity and design of planar global attractors of Sturm type, Ⅲ: Small and Platonic examples, J. Dyn. Diff. Eqns., 22, 121-162 (2010) · Zbl 1204.35106 · doi:10.1007/s10884-009-9149-2
[21] B. Fiedler; C. Rocha, Nonlinear Sturm global attractors: Unstable manifold decompositions as regular CW-complexes, Discr. Cont. Dyn. Sys., 34, 5099-5122 (2014) · Zbl 1327.35194 · doi:10.3934/dcds.2014.34.5099
[22] B. Fiedler; C. Rocha, Schoenflies spheres as boundaries of bounded unstable manifolds in gradient Sturm systems, J. Dyn. Diff. Eqns., 27, 597-626 (2015) · Zbl 1375.35259 · doi:10.1007/s10884-013-9311-8
[23] B. Fiedler and C. Rocha, Sturm 3-balls and global attractors 1: Thom-Smale complexes and meanders, arXiv: 1611.02003, 2016; São Paulo J. Math. Sc. (2017). · Zbl 1408.37027
[24] B. Fiedler and C. Rocha, Sturm 3-balls and global attractors 2: Design of Thom-Smale complexes, arXiv: 1704.00344, 2017; to appear in J. Dyn. Diff. Eqns.
[25] B. Fiedler and C. Rocha, Boundary orders of equilibria in Sturm global attractors, In preparation, 2018.
[26] B. Fiedler and A. Scheel, Spatio-temporal dynamics of reaction-diffusion patterns, In Trends in Nonlinear Analysis, M. Kirkilionis et al. (eds.), Springer-Verlag, Berlin, 2003, 23-152. · Zbl 1082.37004
[27] B. Fiedler; C. Rocha; M. Wolfrum, A permutation characterization of Sturm global attractors of Hamiltonian type, J. Diff. Eqns., 252, 588-623 (2012) · Zbl 1233.35042 · doi:10.1016/j.jde.2011.08.013
[28] B. Fiedler; C. Grotta-Ragazzo; C. Rocha, An explicit Lyapunov function for reflection symmetric parabolic differential equations on the circle, Russ. Math. Surveys., 69, 419-433 (2014) · Zbl 1307.35058
[29] J. M. Franks, Morse-Smale flows and homotopy theory, Topology, 18, 199-215 (1979) · Zbl 0426.58013 · doi:10.1016/0040-9383(79)90003-X
[30] R. Fritsch and R. A. Piccinini, Cellular Structures in Topology, Cambridge University Press, 1990. · Zbl 0837.55001
[31] G. Fusco; W. Oliva, Jacobi matrices and transversality, Proc. Royal Soc. Edinburgh A, 109, 231-243 (1988) · Zbl 0692.58019 · doi:10.1017/S0308210500027748
[32] G. Fusco; C. Rocha, A permutation related to the dynamics of a scalar parabolic PDE, J. Diff. Eqns., 91, 111-137 (1991) · Zbl 0768.35048 · doi:10.1016/0022-0396(91)90134-U
[33] V. A. Galaktionov, Geometric Sturmian Theory of Nonlinear Parabolic Equations and Applications, Chapman & Hall, Boca Raton, 2004. · Zbl 1075.35017
[34] J. K. Hale, Asymptotic Behavior of Dissipative Systems, Math. Surv., 25. AMS, Providence, 1988. · Zbl 0642.58013
[35] J. K. Hale, L. T. Magalh˜aes and W. M. Oliva, Dynamics in Infinite Dimensions, SpringerVerlag, New York, 2002. · Zbl 1002.37002
[36] D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lect. Notes Math., 804, Springer-Verlag, New York, 1981. · Zbl 0456.35001
[37] D. Henry, Some infinite dimensional Morse-Smale systems defined by parabolic differential equations, J. Diff. Eqns., 59, 165-205 (1985) · Zbl 0572.58012 · doi:10.1016/0022-0396(85)90153-6
[38] B. Hu, Blow-up Theories for Semilinear Parabolic Equations, Lect. Notes Math. 2018, Springer-Verlag, Berlin, 2011. · Zbl 1226.35001
[39] A. Karnauhova, Meanders, de Gruyter, Berlin, 2017.
[40] O. A. Ladyzhenskaya, Attractors for Semigroups and Evolution Equations, Cambridge University Press, 1991. · Zbl 0755.47049
[41] Ph. Lappicy, B. Fiedler, A Lyapunov function for fully nonlinear parabolic equations in one spatial variable, arXiv: 1802.09754 [math. DS], submitted 2018.
[42] J. Mallet-Paret, Morse decompositions for delay-differential equations, J. Diff. Eqns., 72, 270-315 (1988) · Zbl 0648.34082 · doi:10.1016/0022-0396(88)90157-X
[43] H. Matano, Convergence of solutions of one-dimensional semilinear parabolic equations, J. Math. Kyoto Univ., 18, 221-227 (1978) · Zbl 0387.35008 · doi:10.1215/kjm/1250522572
[44] H. Matano, Nonincrease of the lap-number of a solution for a one-dimensional semi-linear parabolic equation, J. Fac. Sci. Univ. Tokyo Sec. IA, 29, 401-441 (1982) · Zbl 0496.35011
[45] H. Matano; K.-I. Nakamura, The global attractor of semilinear parabolic equations on \(\begin{document}{S^1}\end{document} \), Discr. Cont. Dyn. Sys., 3, 1-24 (1997)
[46] J. Palis and W. de Melo, Geometric Theory of Dynamical Systems. An Introduction, SpringerVerlag, New York, 1982. · Zbl 0491.58001
[47] J. Palis and S. Smale, Structural stability theorems, Global Analysis. Proc. Simp. in Pure Math. AMS, Providence, (1970), 223-231. · Zbl 0214.50702
[48] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983. · Zbl 0516.47023
[49] G. Raugel, Global attractors in partial differential equations, In [14], (2002), 885-982. · Zbl 1005.35001
[50] C. Rocha, Properties of the attractor of a scalar parabolic PDE, J. Dyn. Diff. Eqns., 3, 575-591 (1991) · Zbl 0769.35032 · doi:10.1007/BF01049100
[51] G. R. Sell and Y. You, Dynamics of Evolutionary Equations, Springer-Verlag, New York, 2002. · Zbl 1254.37002
[52] C. Sturm, Mémoire sur une classe d’équations à différences partielles, Collected Works of Charles François Sturm, 505-576 (2009) · doi:10.1007/978-3-7643-7990-2_33
[53] H. Tanabe, Equations of Evolution, Pitman, Boston, 1979. · Zbl 0417.35003
[54] R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, SpringerVerlag, New York, 1988. · Zbl 0662.35001
[55] T. I. Zelenyak, Stabilization of solutions of boundary value problems for a second order parabolic equation with one space variable, (Russian) Differencial’nye Uravnenija, 4, 34-45 (1968)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.