×

On image reconstruction algorithms for binary electromagnetic geotomography. (English) Zbl 1167.68461

Summary: We discuss the selected image reconstruction methods of binary tomography in the context of their application to geophysical imaging. We restrict our considerations to a discrete version of high-frequency electromagnetic geotomography, which we label as Binary Electromagnetic Geotomography. Basically, such an imaging technique may be applied to detect subsurface anomalies (air-filled voids) whose attenuation coefficient is very low (nearly zero-value) and considerably different from that for the background. The assumption for a binary representation of the image to be reconstructed substantially relaxes image reconstruction problems related to ill-posedness that comes from an intrinsic limitation of an angular range of projections. We test two algorithms for binary tomography, where the penalty term is based on the Markov Random Field model. The mean-field reference distribution and mean-field annealing are applied to estimate the global maximizer of the Gibbs-Boltzmann distribution associated with the objective function. We also apply the projected gradient algorithm that uses a binary steering. Very efficient implementations of the algorithms are also given. The numerical results are presented for noise-free, noisy, and real data.

MSC:

68U10 Computing methodologies for image processing
68T10 Pattern recognition, speech recognition
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Aharoni, R.; Herman, G. T.; Kuba, A., Binary vectors partially determined by linear equation systems, Discrete Math., 171, 1-16 (1997) · Zbl 0877.15004
[2] Becht, A.; Tronicke, J.; Appel, E.; Dietrich, P., Inversion strategy in crosshole radar tomography using information of data subsets, Geophysics, 69, 222-230 (2004)
[3] Bertsekas, D. P., On the Goldstein-Levitin-Polyak gradient projection method, IEEE Trans. Automat. Control, 21, 174-184 (1976) · Zbl 0326.49025
[4] Besag, J., Toward Bayesian image analysis, J. Appl. Stat., 16, 395-407 (1989)
[5] Bichkar, R. S.; Singh, S. K.; Ray, A. K., Genetic algorithmic approach to detection of subsurface voids in cross-hole seismic tomography, Pattern Recognit. Lett., 19, 527-536 (1998)
[6] Björck, A., Numerical Methods for Least Squares Problems (1996), SIAM: SIAM Philadelphia · Zbl 0847.65023
[7] Bouman, C. A.; Sauer, K., A generalized Gaussian image model for edge-preserving map estimation, IEEE Trans. Image Process., 2, 296-310 (1993)
[8] Bregman, N. D.; Bailey, R. C.; Chapman, C. H., Ghosts in tomography: The effect of poor angular coverage in 2-D seismic traveltime inversion, Can. J. Expl. Geophys., 25, 7-27 (1989)
[9] Calamai, P. H.; More, J. J., Projected gradient methods for linearly constrained problems, Math. Program., 39, 93-116 (1987) · Zbl 0634.90064
[10] Censor, Y.; Gordon, D.; Gordon, R., Component averaging: An efficient iterative parallel algorithm for large and sparse unstructured problems, Parallel Comput., 27, 777-808 (2001) · Zbl 0972.68189
[11] Censor, Y.; Matej, S., Binary steering of nonbinary iterative algorithms, (Herman, G. T.; Kuba, A., Discrete Tomography: Foundations, Algorithms, and Applications (1999), Springer: Springer New York), 285-296 · Zbl 0965.68115
[12] Chan, M. T.; Herman, G. T.; Levitan, E., Bayesian image reconstruction using image-modeling Gibbs priors, Int. J. Imaging Syst. Technol., 9, 85-98 (1998)
[13] Chandler, D., Introduction to Modern Statistical Mechanics (1987), Oxford Univ. Press: Oxford Univ. Press Oxford, U.K
[14] Coleman, T. F.; Li, Y., An interior, trust region approach for nonlinear minimization subject to bounds, SIAM J. Optim., 6, 418-445 (1996) · Zbl 0855.65063
[15] Dines, K. A.; Lytle, R. J., Computerized geophysical tomography, Proc. IEEE, 67, 1065-1073 (1979)
[16] Dyer, B.; Worthington, M. H., Some sources of distortion in tomographic velocity images, Geophys. Prospect, 36, 209-222 (1988)
[17] Fishburn, P.; Schwander, P.; Shepp, L.; Vanderbei, R., The discrete Radon transform and its approximate inversion via linear programming, Discrete Appl. Math., 75, 39-61 (1997) · Zbl 0879.68103
[18] Geman, S.; McClure, D., Statistical methods for tomographic image reconstruction, Bull. Int. Stat. Inst., LII-4, 5-21 (1987)
[19] Geman, S.; Reynolds, G., Constrained parameters and the recovery of discontinuities, IEEE Trans. Pattern Anal. Mach. Intell., 14, 367-383 (1992)
[20] Good, I. J., The Estimation of Probabilities: An Essay on Modern Bayesian Methods (1965), MIT Press: MIT Press Cambridge, MA · Zbl 0168.39603
[21] Green, P. J., Bayesian reconstruction from emission tomography data using a modified EM algorithm, IEEE Trans. Med. Imaging, 9, 84-93 (1990)
[22] R. Gritto, Subsurface void detection using seismic tomographic imaging, LBNL-53227, Lawrence Berkeley National Laboratory, Berkeley, USA, 2003; R. Gritto, Subsurface void detection using seismic tomographic imaging, LBNL-53227, Lawrence Berkeley National Laboratory, Berkeley, USA, 2003
[23] Gritzmann, P.; de Vries, S.; Wiegelmann, M., Approximating binary images from discrete X-rays, SIAM J. Optim., 11, 522-546 (2000) · Zbl 0987.05037
[24] Hebert, T.; Leahy, R., A generalized EM algorithm for 3-D Bayesian reconstruction form Poisson data using Gibbs priors, IEEE Trans. Med. Imaging, 8, 194-202 (1989)
[25] (Herman, G. T.; Kuba, A., Discrete Tomography: Foundations, Algorithms, and Applications (1999), Birkhauser: Birkhauser Boston) · Zbl 0946.00014
[26] (Herman, G. T.; Kuba, A., Advances in Discrete Tomography and Its Applications (2007), Birkhauser: Birkhauser Boston) · Zbl 1117.65004
[27] Herman, G. T.; Kuba, A., Discrete tomography in medical imaging, Proc. IEEE, 91, 1612-1626 (2003)
[28] Herman, G. T.; Lent, A.; Rowland, S., ART: Mathematics and applications (a report on the mathematical foundations and on the applicability to real data of the algebraic reconstruction techniques), J. Theoret. Biol., 42, 1-32 (1973)
[29] Ingber, L., Simulated annealing: Practice versus theory, J. Math. Comput. Modelling, 18, 29-57 (1993) · Zbl 0819.90080
[30] Iusem, A. N., On the convergence properties of the projected gradient method for convex optimization, Comput. Appl. Math., 22, 37-52 (2003) · Zbl 1213.90197
[31] Kaczmarz, S., Angenaherte auflosung von systemem linearer gleichungen, Bull. Acad. Pol. Sci. Lett., 35, 355-357 (1937) · JFM 63.0524.02
[32] Koltracht, I.; Lancaster, P.; Smith, D., The structure of some matrices arising in tomography, Linear Algebra Appl., 130, 193-218 (1990) · Zbl 0702.15020
[33] Kuba, A., Reconstruction of two-directionally connected binary patterns from their two orthogonal projections, Computer Vis. Graph. Image Process., 27, 249-265 (1984)
[34] Kuba, A.; Balogh, E., Reconstruction of convex 2D discrete sets in polynomial time, Theoret. Comput. Sci., 283, 223-242 (2002) · Zbl 0997.68152
[35] Kuba, A.; Herman, G. T.; Matej, S.; Todd-Pokropek, A., Medical applications of discrete tomography, (Discrete Mathematical Problems in Medical Applications. Discrete Mathematical Problems in Medical Applications, Ser. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 55 (2000), AMS), 195-208 · Zbl 1133.92338
[36] Kuba, A.; Nagy, A.; Balogh, E., Reconstruction of hv-convex binary matrices from their absorbed projections, Discrete Appl. Math., 139, 137-148 (2004) · Zbl 1072.68633
[37] Kuba, A.; Nivat, M., Reconstruction of discrete sets with absorption, Linear Algebra Appl., 339, 171-194 (2001) · Zbl 1004.65056
[38] Kuba, A.; Nivat, M., A sufficient condition for non-uniqueness in binary tomography with absorption, Theoret. Comput. Sci., 346, 335-357 (2005) · Zbl 1081.68117
[39] Kuba, A.; Rusko, L.; Rodek, L.; Kiss, Z., Preliminary studies of discrete tomography in neutron imaging, IEEE Trans. Nucl. Sci., 52, 380-385 (2005)
[40] Lager, D. L.; Lytle, R. J., Determining a subsurface electromagnetic profile from high frequency measurements by applying reconstruction technique algorithms, Radio Sci., 12, 249-260 (1977)
[41] Lange, K., Convergence of EM image reconstruction algorithms with Gibbs smoothing, IEEE Trans. Med. Imaging, 9, 439-446 (1900)
[42] Lytle, R. J.; Laine, E. F.; Lager, D. L.; Davis, D. J., Using cross borehole electromagnetic probing to locate high contrast anomalies, Geophysics, 44, 1667-1676 (1979)
[43] Matej, S.; Herman, G. T.; Vardi, A., Binary tomography on the hexagonal grid using Gibbs priors, Int. J. Image Syst. Technol., 9, 126-131 (1998)
[44] Mehrotra, S., On the implementation of a primal-dual interior point method, SIAM J. Optim., 2, 575-601 (1992) · Zbl 0773.90047
[45] Mohammad-Djafari, A.; Soussen, C., Compact object reconstruction, (Herman, G. T.; Kuba, A., Discrete Tomography: Foundations, Algorithms, and Applications (1999), Springer: Springer New York), 317-342 · Zbl 0965.92026
[46] (Nabighian, M. N., Electromagnetic Methods in Applied Geophysics. Electromagnetic Methods in Applied Geophysics, Society of Exploration Geophysicists, vol. 2 (1991), Tulsa)
[47] Pham Dinh, T.; Hoai An, L. T., A D.C. optimization algorithm for solving the trust-region subproblem, SIAM J. Optim., 8, 476-505 (1998) · Zbl 0913.65054
[48] Phillips, W. S.; Fehler, M. C., Traveltime tomography: A comparison of popular methods, Geophysics, 56, 1639-1649 (1991)
[49] Phillips, J. W.; Leahy, R. M.; Mosher, J. C., MEG-based imaging of focal neuronal current sources, IEEE Trans. Med. Imaging, 16, 338-348 (1997)
[50] Popa, C.; Zdunek, R., Kaczmarz extended algorithm for tomographic image reconstruction from limited-data, Math. Comput. Simul., 65, 579-598 (2004)
[51] Pralat, A.; Zdunek, R., Electromagnetic geotomography — selection of measuring frequency, IEEE Sensors J., 5, 242-250 (2005)
[52] Radcliff, R. D.; Balanis, C. A., Reconstruction algorithms for geophysical applications in noisy environments, Proc. IEEE, 67, 1060-1064 (1979)
[53] Rowbotham, P. S.; Pratt, R. G., Improved inversion through use of the null space, Geophysics, 62, 869-883 (1997)
[54] Saquib, S. S.; Bouman, C. A.; Sauer, K., ML parameter estimation for Markov random fields with applications to Bayesian tomography, IEEE Trans. Image Process., 7, 1029-1044 (1998)
[55] Schule, T.; Schnorr, C.; Weber, S.; Hornegger, J., Discrete tomography by convex-concave regularization and D.C. programming, Discrete Appl. Math., 151, 229-243 (2005) · Zbl 1131.68571
[56] Schule, T.; Weber, S.; Schnorr, C., Adaptive reconstruction of discrete-valued objects from few projections, Electron. Notes Discrete Math., 20, 365-384 (2005) · Zbl 1179.68190
[57] Snieder, R.; Trampert, J., Inverse problems in geophysics, (Wirgin, A., Wavefield Inversion (1999), Springer-Verlag: Springer-Verlag New York), 119-190 · Zbl 1075.86524
[58] Tanabe, K., Projection method for solving a singular system of linear equations and its applications, Numer. Math., 17, 203-214 (1971) · Zbl 0228.65032
[59] van der Sluis, A.; van der Vorst, H. A., Numerical solution of large, sparse linear algebraic systems arising from tomographic problems, (Nolet, G., Seismic Tomography with Applications in Global Seismology and Exploration Geophysics (1987), D. Reidel Publ. Co), 49-83
[60] S. Weber, C. Schnorr, J. Hornegger, A linear programming relaxation for binary tomography with smoothness priors, in: Proceedings of International Workshop on Combinatorial Image Analysis, IWCIA’03, Palermo, Italy, May 14-16, 2003; S. Weber, C. Schnorr, J. Hornegger, A linear programming relaxation for binary tomography with smoothness priors, in: Proceedings of International Workshop on Combinatorial Image Analysis, IWCIA’03, Palermo, Italy, May 14-16, 2003 · Zbl 1173.68872
[61] Weber, S.; Schule, T.; Hornegger, J.; Schnorr, C., Binary tomography by iterating linear programs from noisy projections, (IWCIA 2004. IWCIA 2004, LNCS, vol. 3322 (2004)), 38-51 · Zbl 1113.68625
[62] Zdunek, R.; Pralat, A., Detection of subsurface bubbles with discrete electromagnetic geotomography, Electron. Notes Discrete Math., 20, 535-553 (2005) · Zbl 1179.44001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.