×

Multiple drops impact onto a liquid film: direct numerical simulation and experimental validation. (English) Zbl 1521.76041

Summary: A simultaneous impact of three water drops (aligned with equidistant spacing) onto a solid wall covered by a thin liquid film is predicted by direct numerical simulation using the multiphase code Free Surface 3D (FS3D) which is based on the volume-of-fluid (VOF) method and uses the piecewise linear interface calculation (PLIC) method to reconstruct the interface. The numerically reproduced splashing morphology is qualitatively and quantitatively compared with available experimental data and theoretical models. The results show the reliability of the numerical tool (FS3D) to predict quantitatively the complex phenomena involved in detail, like the evolution of crown geometry and the liquid structures resulting from the interaction between the different crowns. The comparison evidenced also the most important critical aspects of the numerical simulation of such complex phenomena, not often reported or even considered in the available open literature (e.g. the early lamella rupture observed in the simulation, caused by a limited numerical resolution, antagonist to the inadequacy of related rupture models). This phenomenon is still a challenging research topic (from both the experimental and the numerical side) and its study is still a necessary step for gaining detailed knowledge for improving the stochastic simulations of multiple drops impact onto liquid films.

MSC:

76A20 Thin fluid films
76-05 Experimental work for problems pertaining to fluid mechanics
76D45 Capillarity (surface tension) for incompressible viscous fluids

Software:

FS3D
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Macklin, W. C.; Metaxas, G. J., Splashing of drops on liquid layers, J Appl Phys, 47, 3963-3970 (1976)
[2] Cossali, G. E.; Coghe, A.; Marengo, M., The impact of a single drop on a wetted solid surface, Exp Fluids, 22, 463-472 (1997)
[3] Prosperetti, A.; Oguz, H. N., The impact of drops on liquid surfaces and the underwater noise of rain, Ann Rev Fluid Mech, 25, 577-602 (1993)
[4] Rein, M., Phenomena of liquid drop impact on solid and liquid surfaces, Fluid Dyn. Res., 12, 2, 61-93 (1993)
[5] Wang, A. B.; Chen, C. C., Spalshing impact of drops onto very thin liquid films”, Phys Fluids, 12, 2155-2158 (2000) · Zbl 1184.76582
[6] Sivakumar, D.; Tropea, C., “Splashing impact of a spray onto a liquid film, Phys Fluids, 14, L85 (2002) · Zbl 1185.76345
[7] R. Rioboo, C. Bauthier, J. Conti, M. Voué, J. De Coninck “Experimental investigation of splash and crown formation during single drop impact on wetted surfaces” Exp Fluids 35: 648-652 (2003)
[8] Cossali, G. E.; Marengo, M.; Coghe, A.; Zhdanov, S., The role of time in single drop splash on thin film”, Exp Fluids, 36, 888-900 (2004)
[9] Kaufmann, J.; Geppert, A.; Ertl, M.; Bernard, R.; Vaikuntanathan, V.; Lamanna, G., Direct numerical simulations of one- and two-component droplet wall-film interactions within the crown-type splashing regime, (Proceedings in: ICLASS (2018))
[10] Yarin, A. L., Drop impact dynamics: splashing, spreading, receding, bouncing…, Ann Rev Fluid Mech, 38, 159-192 (2006) · Zbl 1097.76012
[11] Liang, G.; Mudawar, I., Review of mass and momentum interactions during drop impact on a liquid film, Int J Heat Mass Transf, 101, 577-599 (2016)
[12] Yarin, A. L.; Roisman, I.; Tropea, C., Collision phenomena in liquids and solids (2017), Cambridge University Press · Zbl 1365.74003
[13] Moreira, A. L.N.; Moita, A. S.; Panão, M. R., Advances and challenges in explaining fuel spray impingement: how much of single droplet impact research is useful?, Prog Energy Combust Sci, 36, 554-580 (2010)
[14] Yarin, A. L.; Weiss, D. A., Impact of drops on solid surfaces: self-similar capillary waves and splashing as a new type of kinematic discontinuity, J Fluid Mech, 283, 141-173 (1995)
[15] Barnes, H. A.; Hardalupas, Y.; Taylor, A. M.K. P.; Wilkins, J. H., An investigation of the interaction between two adjacent impinging droplets, (Proceedings in: ILASS-Europe (1999))
[16] Kalb, T.; Kaiser, H.-G.; Chaves, H.; Obermeier, F.; Ebert, F., Splashing due to neighbouring droplet impact, (Proceedings in: ILASS-Europe (2000))
[17] Cossali, G. E.; Marengo, M.; Santini, M., Drop array impacts on heated surfaces: secondary atomization characteristics, (Proceedings in: ILASS-Europe (2004))
[18] Cossali, G. E.; Marengo, M.; Santini, M., Splashing characteristics of multiple and single drop impacts onto a thin liquid film, (Proceedings in: ICMF (2007))
[19] Ersoy, N. E.; Eslamian, M., Central uprising sheet in simultaneous and near-simultaneous impact of two high kinetic energy droplets onto dry surface and thin liquid film, Phys Fluid, 32, Article 012108 pp. (2020)
[20] Guo, J.; Dai, S., Numerical simulation on the mechanism of the normal impact of two droplets onto a thin film, J Shanghai Univ, 11, 210-212 (2007)
[21] Ray, B.; Biswas, G.; Sharma, A.; Welch, S. W.J., CLSVOF method to study consecutive drop impact on liquid pool, Int J Numer Methods Heat Fluid Flow, 23, 1, 143-158 (2013) · Zbl 1356.76255
[22] Bick, A. G.; Ristenpart, W. D.; van Nierop, E. A.; Stone, H. A., Bubble formation via multidrop impacts, Phys Fluids, 22 (2010), 042105 · Zbl 1190.76015
[23] Guo, Y.; Chen, G.; Shen, S.; Zhang, J., Double droplets simultaneous impact on liquid film, (Proceedings in: ICCHT (2014))
[24] Xu, X.; Ouyang, J.; Jiang, T.; Li, Q., Numerical analysis of the impact of two droplets with a liquid film using an incompressible SPH method, J Eng Math, 85, 35-53 (2014) · Zbl 1359.76237
[25] Raman, K. A.; Jaiman, R. K.; Lee, T. S.; Low, H. T., On the dynamics of crown structure in simultaneous two droplets impact onto stationary and moving liquid film, Comput Fluids, 107, 285-300 (2015) · Zbl 1390.76031
[26] Wu, J.; Liu, C.; Zhao, N., Dynamics of falling droplets impact on a liquid film: hybrid lattice Boltzmann simulation, Colloids Surf A, 472, 92-100 (2015)
[27] Li, L.; Jia, X.; Liu, Y.; Su, M., Simulation of double droplets impact on liquid film by a simplified lattice Boltzmann model”, Appl Therm Eng, 98, 656-669 (2016)
[28] Liang, G.; Zhang, T.; Yu, H.; Chen, H.; Shen, S., Simultaneous impact of multiple droplets on liquid film, J Ind Eng Chem, 65, 51-61 (2018)
[29] Guo, Y.; Lian, Y., Numerical investigation of oblique impact of multiple drops on thin liquid film, J Colloid Interface Sci, 530, 586-594 (2018)
[30] Liang, G.; Zhang, T.; Chen, H.; Yu, H.; Shen, S., Successive impact of multiple droplets on liquid film, Eur. J. Mech. B Fluids, 74, 389-398 (2019)
[31] Liang, G.; Zhang, T.; Chen, L.; Chen, Y.; Shen, S., Single-phase heat transfer of multi-droplet impact on liquid film, Int J Heat Mass Transf, 132, 288-292 (2019)
[32] Liang, G.; Zhang, T.; Chen, Y.; Chen, L.; Shen, S., Two-phase heat transfer of multi-droplet impact on liquid film, Int J Heat Mass Transf, 139, 832-847 (2019)
[33] Liang, G.; Chen, L.; Chen, Y.; Shen, S., Interfacial phenomena and heat transfer associated with multi-droplet impact on flowing liquid film, Numer Heat Transf Part A, 77, 1, 80-89 (2020)
[34] Guilizzoni, M.; Santini, M.; Fest-Santini, S., Synchronized multiple drop impacts into a deep pool, Fluids, 4, 3, 141 (2019)
[35] Liang, G.; Zhang, T.; Chen, Y.; Chen, L.; Shen, S., Non-simultaneous impact of multiple droplets on liquid film, Numer Heat Transf Part A, 75, 2, 137-147 (2019)
[36] Eisenschmidt, K.; Ertl, M.; Gomaa, H.; Kieffer-Roth, C.; Meister, C.; Rauschenberger, P.; Reitzle, M.; Schlottke, K.; Weigand, B., Direct numerical simulations for multiphase flows: an overview of the multiphase code FS3D”, Appl Math Comput, 272-11, 508-517 (2016) · Zbl 1410.76004
[37] Santini, M., Effect of surface properties on secondary atomization by impact of drops over heated surfaces” Ph.D. thesis, Effect of surface properties on secondary atomization by impact of drops over heated surfaces (2005), Ph.D. thesis, University of Parma: Ph.D. thesis, University of Parma Italy
[38] Rieber, M.; Frohn, A., A numerical study on the mechanism of splashing, Int J Heat Fluid Flow, 20-5, 455-461 (1999)
[39] Hirt, C. W.; Nichols, B. D., Volume of fluid (VOF) method for the dynamics of free boundaries”, J Comput Phys, 39-1, 201-225 (1981) · Zbl 0462.76020
[40] Rider, W. J.; Kothe, D. B., Reconstructing volume tracking, J Comput Phys, 141-2, 112-152 (1998) · Zbl 0933.76069
[41] Rieber, M., Numerische Modellierung der Dynamik freier Grenzflächen in Zweiphasenströmungen, Numerische Modellierung der Dynamik freier Grenzflächen in Zweiphasenströmungen (2004), Dissertation, Universität Stuttgart: Dissertation, Universität Stuttgart Germany
[42] Lafaurie, B.; Nardone, C.; Scardovelli, R.; Zaleski, S.; Zanetti, G., Modelling merging and fragmentation in multiphase flows with surfer, J Comput Phys, 113-1, 134-147 (1994) · Zbl 0809.76064
[43] Liu, M.; Bothe, D., Numerical study of head-on collisions at high Weber numbers, J Fluid Mech, 789, 785-805 (2016)
[44] Tropea, C.; Roisman, I. V., Modelling of spray impact on solid surfaces, At. Sprays, 10, 387-408 (2000)
[45] Gao, X.; Li, R., Impact of a single drop impact on a flowing liquid film, Phys Rev E, 92, Article 053005 pp. (2015)
[46] G. Lamanna, A. Geppert, B. Bernhard, I. Hoerner, B.. Weigand “Drop impact on wetted walls: an analytical solution for modelling the crown spreading based on stagnation point flow” arXiv:2007.08889 [physics.flu-dyn]
[47] Josserand, C.; Zaleski, S., Droplet splashing on a thin liquid film, Phys Fluids, 15, 6, 1650 (2003) · Zbl 1186.76263
[48] Liu, M.; Bothe, D., Toward the predictive simulation of bouncing versus coalescence in binary drop collisions, Acta Mech, 230, 636-644 (2018)
[49] Otsu, N., A thresholding selection method from grayscale histogram, IEEE Trans Syst Man Cybern, 9, 1, 62-66 (1979)
[50] Kowalcyuk, P. B.; Drzymala, J., Physical meaning of the Sauter mean diameter of spherical particulate matter, Part Sci Technol, 34, 6, 645-647 (2016)
[51] Roisman, I. V.; Tropea, C., “Impact of a drop onto a wetted wall: description of crown formation and propagation, J Fluid Mech, 472, 373-397 (2002) · Zbl 1163.76357
[52] Popinet, S., An accurate adaptive solver for surface-tension-driven interfacial, J Comput Phys, 228-16, 5838-5866 (2009) · Zbl 1280.76020
[53] Focke, C.; Bothe, D., Direct numerical simulation of binary off-center collisions of shear thinning droplets at high Weber numbers, Phys Fluids, 24, Article 073105 pp. (2012)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.