×

The bending-gradient theory for thick plates: existence and uniqueness results. (English) Zbl 1415.74027

Summary: This paper is devoted to the mathematical justification of the Bending-Gradient theory which is considered as the extension of the Reissner-Mindlin theory (or the First Order Shear Deformation Theory) to heterogeneous plates. In order to rigorously assess the well-posedness of the Bending-Gradient problems, we first assume that the compliance tensor related to the generalized shear force is positive definite. We define the functional spaces to which the variables of the theory belong, then state and prove the existence and uniqueness theorems of solutions of the Bending-Gradient problems for clamped and free plates, as well as for simply supported plates. The obtained results are afterward extended to the general case, i.e., when the compliance tensor related to generalized shear forces is not definite.

MSC:

74G65 Energy minimization in equilibrium problems in solid mechanics
74K20 Plates
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Alessandrini, S. M.; Arnold, D. N.; Falk, R. S.; Madureira, A. L.; Fortin, M. (ed.), Derivation and justification of plate models by variational methods, 1-21 (1999), Providence · Zbl 0958.74033
[2] Arnold, D.N., Falk, R.S.: Asymptotic analysis of the boundary layer for the Reissner-Mindlin plate model. SIAM J. Math. Anal. 27(2), 486-514 (1996) · Zbl 0846.73027 · doi:10.1137/S0036141093245276
[3] Arnold, D.N., Madureira, A.L., Zhang, S.: On the range of applicability of the Reissner-Mindlin and Kirchhoff-Love plate bending models. J. Elast. 67(3), 171-185 (2002) · Zbl 1089.74595 · doi:10.1023/A:1024986427134
[4] Bollé, L.: Contribution au problème linéaire de flexion d’une plaque élastique. Bull. Tech. Suisse Romande 73(21), 281-285 (1947)
[5] Braess, D., Sauter, S., Schwab, C.: On the justification of plate models. J. Elast. 103(1), 53-71 (2010) · Zbl 1237.74127 · doi:10.1007/s10659-010-9271-8
[6] Carrera, E.: Theories and finite elements for multilayered, anisotropic, composite plates and shells. Arch. Comput. Methods Eng. 9(2), 87-140 (2002) · Zbl 1062.74048 · doi:10.1007/BF02736649
[7] Ciarlet, P.G.: Plates and Junctions in Elastic Multi-Structures: An Asymptotic Analysis. Collection Recherches en Mathématiques Appliquées. Masson, Paris (1990) · Zbl 0706.73046
[8] Ciarlet, P.G.: Mathematical Elasticity—Volume II: Theory of Plates. Elsevier, Amsterdam (1997) · Zbl 0888.73001
[9] Ciarlet, P.G., Destuynder, P.: Justification of the 2-dimensional linear plate model. J. Méc. 18(2), 315-344 (1979) · Zbl 0415.73072
[10] Diaz Diaz, A.: Un modèle de stratifiés. C. R. Acad. Sci., Sér. 2, Méc. 329(12), 873-879 (2001) · Zbl 1161.74356
[11] Hencky, H.: Über die Berücksichtigung der Schubverzerrung in ebenen Platten. Ing.-Arch. 16(1), 72-76 (1947) · Zbl 0030.04301 · doi:10.1007/BF00534518
[12] Hughes, T.J.R.: The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Dover Civil and Mechanical Engineering. Dover, New York (1987) · Zbl 0634.73056
[13] Lebée, A., Sab, K.: A Bending-Gradient model for thick plates. Part I: Theory. Int. J. Solids Struct. 48(20), 2878-2888 (2011) · doi:10.1016/j.ijsolstr.2011.06.006
[14] Lebée, A., Sab, K.: A Bending-Gradient model for thick plates, Part II: Closed-form solutions for cylindrical bending of laminates. Int. J. Solids Struct. 48(20), 2889-2901 (2011) · doi:10.1016/j.ijsolstr.2011.06.005
[15] Lebée, A., Sab, K.: Homogenization of cellular sandwich panels. C. R., Méc. 340(4-5), 320-337 (2012) · doi:10.1016/j.crme.2012.02.014
[16] Lebée, A., Sab, K.: Homogenization of thick periodic plates: application of the Bending-Gradient plate theory to a folded core sandwich panel. Int. J. Solids Struct. 49(19-20), 2778-2792 (2012) · doi:10.1016/j.ijsolstr.2011.12.009
[17] Lebée, A., Sab, K.: Homogenization of a space frame as a thick plate: application of the Bending-Gradient theory to a beam lattice. Comput. Struct. 127, 88-101 (2013) · doi:10.1016/j.compstruc.2013.01.011
[18] Lebée, A.; Sab, K.; Altenbach, H. (ed.); Forest, S. (ed.); Krivtsov, A. (ed.), Justification of the Bending-Gradient theory through asymptotic expansions, 217-236 (2013), Berlin · doi:10.1007/978-3-642-36394-8_12
[19] Lebée, A., Sab, K.: On the generalization of Reissner plate theory to laminated plates, Part I: Theory. J. Elast. 126(1), 39-66 (2017) · Zbl 1364.74041 · doi:10.1007/s10659-016-9581-6
[20] Lebée, A., Sab, K.: On the generalization of Reissner plate theory to laminated plates, Part II: Comparison with the Bending-Gradient theory. J. Elast. 126(1), 67-94 (2017) · Zbl 1364.74042 · doi:10.1007/s10659-016-9580-7
[21] Morgenstern, D.: Herleitung der Plattentbeorie aus der dreidimensionalen Elastizitätstheorie. Arch. Ration. Mech. Anal. 4, 145-152 (1959) · Zbl 0126.20605 · doi:10.1007/BF00281383
[22] Neff, P., Hong, K.I., Jeong, J.: The Reissner-Mindlin plate is the Γ \(\Gamma \)-limit of Cosserat elasticity. Math. Models Methods Appl. Sci. 20(09), 1553-1590 (2010) · Zbl 1253.74004 · doi:10.1142/S0218202510004763
[23] Noor, A.K., Malik, M.: An assessment of five modeling approaches for thermo-mechanical stress analysis of laminated composite panels. Comput. Mech. 25(1), 43-58 (2000) · Zbl 1117.74301 · doi:10.1007/s004660050014
[24] Pagano, N.J.: Exact solutions for composite laminates in cylindrical bending. J. Compos. Mater. 3(3), 398-411 (1969) · doi:10.1177/002199836900300304
[25] Pagano, N.J.: Influence of shear coupling in cylindrical. bending of anisotropic laminates. J. Compos. Mater. 4(3), 330-343 (1970) · doi:10.1177/002199837000400305
[26] Paroni, R., Podio-guidugli, P., Tomasseti, G.: A justification of Reissner-Mindlin plate theory through variational convergence. Anal. Appl. 05(02), 165-182 (2007) · Zbl 1109.74031 · doi:10.1142/S0219530507000936
[27] Prager, W., Synge, J.: Approximations in elasticity based on the concept of function space. Q. Appl. Math. 5, 241-269 (1947) · Zbl 0029.23505 · doi:10.1090/qam/25902
[28] Reddy, J.N.: On refined computational models of composite laminates. Int. J. Numer. Methods Eng. 27(2), 361-382 (1989) · Zbl 0724.73234 · doi:10.1002/nme.1620270210
[29] Reissner, E.: On the theory of bending of elastic plates. J. Math. Phys. 23, 184-191 (1944) · Zbl 0061.42501 · doi:10.1002/sapm1944231184
[30] Reissner, E.: The effect of transverse shear deformation on the bending of elastic plates. J. Appl. Mech. 12(2), 69-77 (1945) · Zbl 0063.06470
[31] Reissner, E.: Reflections on the theory of elastic plates. Appl. Mech. Rev. 38(11), 1453 (1985) · doi:10.1115/1.3143699
[32] Sab, K., Lebée, A.: Homogenization of Thick and Heterogeneous Plates. Wiley, New York (2015) · Zbl 1364.74041 · doi:10.1002/9781119005247
[33] Sab, K., Legoll, F., Forest, S.: Stress gradient elasticity theory: existence and uniqueness of solution. J. Elast. 123(2), 179-201 (2016) · Zbl 1339.35314 · doi:10.1007/s10659-015-9554-1
[34] Whitney, J.M.: Stress analysis of thick laminated composite and sandwich plates. J. Compos. Mater. 6(4), 426-440 (1972) · doi:10.1177/002199837200600401
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.