×

Analysis of tapered thin plates using basic displacement functions. (English) Zbl 1390.74093

Summary: Presenting new functions, basic displacement functions (BDFs), a novel method is introduced for the analysis of arbitrarily tapered thin plates in preference to primarily mathematically based methodologies. BDFs are obtained through applying unit load theorem and considering two orthogonal strips of unit width in tapered plates based on static deformations. It is shown that new shape functions and consequently structural matrices could be derived in terms of BDFs through a mechanical approach. On the other hand, BDFs could be used to calculate new shape functions, whereas Hermitian functions are used in several elements such as ACM and BFS. It is demonstrated that the accuracy of these new shape functions is significantly improved by considering the geometrical and mechanical properties of the plate element in the evaluation of the structural matrices. So, contrary to usual shape functions used in FE methods, they are susceptible to the thickness variation and then higher accuracy and more rapid convergence could be expected with fewer elements. In order to verify the competency of the proposed method, several numerical examples for classical boundary conditions are carried out and the results are compared with those in the literature.

MSC:

74H45 Vibrations in dynamical problems in solid mechanics
74K20 Plates
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Leissa A.W.: The free vibration of rectangular plates. J. Sound Vib. 31, 257-293 (1973) · Zbl 0268.73033 · doi:10.1016/S0022-460X(73)80371-2
[2] Liew K.M., Xiang Y., Kitipornchai S.: Transverse vibration of thick rectangular plates—I. Comprehensive sets of boundary conditions. Comput. Struct. 49, 1-29 (1993) · doi:10.1016/0045-7949(93)90122-T
[3] Liew K.M., Hung K.C., Lim M.K.: Vibration of Mindlin plates using boundary characteristic orthogonal polynomials. J. Sound Vib. 182, 77-90 (1995) · doi:10.1006/jsvi.1995.0183
[4] Liew K.M., Hung K.C., Lim M.K.: Three-dimensional vibration of rectangular plates: effects of thickness and edge constraints. J. Sound Vib. 182, 709-727 (1995) · doi:10.1006/jsvi.1995.0228
[5] Liew K.M., Teo T.M.: Three-dimensional vibration analysis of rectangular plates based on differential quadrature method. J. Sound Vib. 220, 577-599 (1999) · Zbl 0948.74078 · doi:10.1006/jsvi.1998.1927
[6] Xing Y., Liu B.: Closed form solutions for free vibrations of rectangular Mindlin plates. Acta Mech. Solida Sin. 25, 689-698 (2009) · Zbl 1269.74105 · doi:10.1007/s10409-009-0253-7
[7] Hashemi S.H., Arsanjani M.: Exact characteristic equations for some of classical boundary conditions of vibrating moderately thick rectangular plates. Int. J. Solids Struct. 42, 819-853 (2005) · Zbl 1125.74338 · doi:10.1016/j.ijsolstr.2004.06.063
[8] Lim C.W., Cui S., Yao W.A.: On new symplectic elasticity approach for exact bending solutions of rectangular thin plates with two opposite sides simply supported. Int. J. Solids Struct. 44, 5396-5411 (2007) · Zbl 1311.74072 · doi:10.1016/j.ijsolstr.2007.01.007
[9] Yu S.N., Xiang Y., Wei G.W.: Matched interface and boundary (MIB) method for the vibration analysis of plates. Commun. Numer. Methods Eng. 25, 923-950 (2009) · Zbl 1307.74043 · doi:10.1002/cnm.1130
[10] Liu Y., Li R.: Accurate bending analysis of rectangular plates with two adjacent edges free and the others clamped or simply supported based on new symplectic approach. Appl. Math. Model. 34, 856-865 (2010) · Zbl 1185.74045 · doi:10.1016/j.apm.2009.07.003
[11] Liu B., Xing Y.: Exact solutions for free in-plane vibrations of rectangular plates. Acta Mech. Solida Sin. 24, 556-567 (2011) · doi:10.1016/S0894-9166(11)60055-4
[12] Eftekhari S.A., Jafari A.A.: High accuracy mixed finite element-Ritz formulation for free vibration analysis of plates with general boundary conditions. Appl. Math. Comput. 219, 1312-1344 (2012) · Zbl 1286.74099 · doi:10.1016/j.amc.2012.07.039
[13] Al-Kaabi S.A., Aksu G.: Free vibration analysis of Mindlin plates with parabolically varying thickness. Comput. Struct. 34, 395-399 (1990) · Zbl 0716.73050 · doi:10.1016/0045-7949(90)90264-3
[14] Malhotra S.K., Ganesan N., Veluswami M.A.: Vibrations of orthotropic square plates having variable thickness (parabolic variation). J. Sound Vib. 119, 184-188 (1987) · doi:10.1016/0022-460X(87)90199-4
[15] Katsikadelis J.T., Sapountzakis E.J.: BEM solution to dynamic analysis of plates with variable thickness. Comput. Mech. 7, 369-379 (1991) · Zbl 0731.73087 · doi:10.1007/BF00350166
[16] Kukreti A.R., Farsa J., Bert C.W.: Fundamental frequency of tapered plates by differential quadrature. J. Eng. Mech. ASCE 118, 1221-1238 (1992) · doi:10.1061/(ASCE)0733-9399(1992)118:6(1221)
[17] Gutierrez R., Laura P.: Vibrations of rectangular plates with linearly varying thickness and non-uniform boundary conditions. J. Sound Vib. 178, 563-566 (1994) · doi:10.1006/jsvi.1994.1504
[18] Gutierrez R., Laura P.: Analysis of vibrating circular plates of non-uniform thickness by the method of differential quadrature. Ocean Eng. 22, 97-100 (1995) · doi:10.1016/0029-8018(93)E0004-C
[19] Afonso S.M.B., Hinton E.: Free vibration analysis and shape optimization of variable thickness plates and shells—I. Finite element studies. Comput. Syst. Eng. 6, 27-45 (1995) · doi:10.1016/0956-0521(95)00011-N
[20] Rossi R., Belles P., Laura P.: Transverse vibration of a rectangular cantilever plates with thickness varying in a discontinuous fashion. Ocean Eng. 23, 271-276 (1996) · doi:10.1016/0029-8018(95)00025-9
[21] Bert C.W., Malik M.: Free vibration analysis of tapered rectangular plates by differential quadrature method: a semi-analytical approach. J. Sound Vib. 190, 41-63 (1996) · doi:10.1006/jsvi.1996.0046
[22] Barton O.: Fundamental frequency of tapered plates by method of eigensensitivity analysis. Ocean Eng. 26, 565-573 (1999) · doi:10.1016/S0029-8018(97)10003-8
[23] Cheung Y.K., Zhou D.: Free vibrations of tapered rectangular plates using a new set of beam functions in Rayleigh-Ritz method. J. Sound Vib. 223, 703-722 (1999) · doi:10.1006/jsvi.1998.2160
[24] Bambill D.V., Rossit C.A., Laura P.A.A., Rossi R.E.: Transverse vibrations of an orthotropic rectangular plate of linearly varying thickness and with a free edge. J. Sound Vib. 235, 530-538 (2000) · doi:10.1006/jsvi.2000.2904
[25] Ashour A.S.: A semi-analytical solution of the flexural vibration of orthotropic plates of variable thickness. J. Sound Vib. 240, 431-445 (2001) · Zbl 1237.74202 · doi:10.1006/jsvi.2000.3238
[26] Ashour A.S.: Vibration of variable thickness plates with edges elastically restrained against translation and rotation. Thin Wall Struct. 42, 1-24 (2004) · doi:10.1016/S0263-8231(03)00127-7
[27] Huang M., Ma X.Q., Sakiyama T., Matuda H., Morita C.: Free vibration analysis of orthotropic rectangular plates with variable thickness and general boundary conditions. J. Sound Vib. 288, 931-955 (2005) · doi:10.1016/j.jsv.2005.01.052
[28] Malekzadeh P., Shahpari S.A.: Free vibration analysis of variable thickness thin and moderately thick plates with elastically restrained edges by DQM. Thin Wall Struct. 43, 1037-1050 (2005) · doi:10.1016/j.tws.2004.11.008
[29] Shufrin I., Eisenberger M.: Vibration of shear deformable plates with variable thickness—first-order and higher-order analyses. J. Sound Vib. 290, 465-489 (2006) · Zbl 1086.74510 · doi:10.1016/j.jsv.2005.04.003
[30] Xu Y.P., Zhou D.: Three-dimensional elasticity solution for simply supported rectangular plates with variable thickness. J. Strain Anal. Eng. Des. 43, 165-176 (2008) · doi:10.1243/03093247JSA353
[31] Civalek Ö.: Fundamental frequency of isotropic and orthotropic rectangular plates with linearly varying thickness by discrete singular convolution method. Appl. Math. Model. 33, 3825-3835 (2009) · Zbl 1205.74104 · doi:10.1016/j.apm.2008.12.019
[32] Attarnejad R.: Basic displacement functions in analysis of non-prismatic beams. Eng. Comput. 27, 733-745 (2010) · Zbl 1284.74138 · doi:10.1108/02644401011062117
[33] Attarnejad R., Shahba A.: Basic displacement functions in analysis of centrifugally stiffened tapered beams. AJSE 36(5), 841-853 (2011) · Zbl 1271.74112
[34] Attarnejad R., Shahba A., Jandaghi Semnani S.: Application of differential transform in free vibration analysis of Timoshenko beams resting on two-parameter elastic foundation. AJSE 35(2), 125-132 (2010)
[35] Attarnejad R., Shahba A., Jandaghi Semnani S.: Analysis of non-prismatic Timoshenko beams using basic displacement functions. Adv. Struct. Eng. 14, 319-332 (2011) · Zbl 1293.74416 · doi:10.1260/1369-4332.14.2.319
[36] Attarnejad R., Shahba A., Jandaghi Semnani S.: Application of differential transform in free vibration analysis of Timoshenko beams resting on two-parameter elastic foundation. AJSE 35(2), 125-132 (2010)
[37] Shahba A., Attarnejad R., Tavanaie Marvi M., Shahriari V.: Free vibration analysis of non-uniform thin curved arches and rings using adomian modified decomposition method. AJSE 37(4), 965-976 (2012) · Zbl 1296.74144
[38] Attarnejad R., Shahba A.: Dynamic basic displacement functions in free vibration analysis of centrifugally stiffened tapered beams: a mechanical solution. Meccanica 46, 1267-1281 (2011) · Zbl 1271.74112 · doi:10.1007/s11012-010-9383-z
[39] Pachenari, Z; Attarnejad, R.: Free vibration of tapered Mindlin plates using basic displacement functions. AJSE 39(6), 4433-4449 (2014). doi:10.1007/s13369-014-1071-1 · Zbl 1390.74129
[40] Szilard R.: Theories and Applications of Plate Analysis: Classical, Numerical and Engineering Methods. Wiley, New Jersey (2004) · doi:10.1002/9780470172872
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.