×

Stochastic control liaisons. Richard Sinkhorn meets Gaspard Monge on a Schrödinger bridge. (English) Zbl 1465.49016

Summary: In 1931–1932, Erwin Schrödinger studied a hot gas Gedankenexperiment (an instance of large deviations of the empirical distribution). Schrödinger’s problem represents an early example of a fundamental inference method, the so-called maximum entropy method, having roots in Boltzmann’s work and being developed in subsequent years by Jaynes, Burg, Dempster, and Csiszár. The problem, known as the Schrödinger bridge problem (SBP) with “uniform” prior, was more recently recognized as a regularization of the Monge-Kantorovich optimal mass transport (OMT) problem, leading to effective computational schemes for the latter. Specifically, OMT with quadratic cost may be viewed as a zero-temperature limit of the problem posed by Schrödinger in the early 1930s. The latter amounts to minimization of Helmholtz’s free energy over probability distributions that are constrained to possess two given marginals. The problem features a delicate compromise, mediated by a temperature parameter, between minimizing the internal energy and maximizing the entropy. These concepts are central to a rapidly expanding area of modern science dealing with the so-called Sinkhorn algorithm, which appears as a special case of an algorithm first studied in the more challenging continuous space setting by the French analyst Robert Fortet in 1938–1940 specifically for Schrödinger bridges. Due to the constraint on end-point distributions, dynamic programming is not a suitable tool to attack these problems. Instead, Fortet’s iterative algorithm and its discrete counterpart, the Sinkhorn iteration, permit computation of the optimal solution by iteratively solving the so-called Schrödinger system. Convergence of the iteration is guaranteed by contraction along the steps in suitable metrics, such as Hilbert’s projective metric.
In both the continuous as well as the discrete time and space settings, stochastic control provides a reformulation of and a context for the dynamic versions of general Schrödinger bridge problems and of their zero-temperature limit, the OMT problem. These problems, in turn, naturally lead to steering problems for flows of one-time marginals which represent a new paradigm for controlling uncertainty. The zero-temperature problem in the continuous-time and space setting turns out to be the celebrated Benamou-Brenier characterization of the McCann displacement interpolation flow in OMT. The formalism and techniques behind these control problems on flows of probability distributions have attracted significant attention in recent years as they lead to a variety of new applications in spacecraft guidance, control of robot or biological swarms, sensing, active cooling, and network routing as well as in computer and data science. This multifaceted and versatile framework, intertwining SBP and OMT, provides the substrate for the historical and technical overview of the field given in this paper. A key motivation has been to highlight links between the classical early work in both topics and the more recent stochastic control viewpoint, which naturally lends itself to efficient computational schemes and interesting generalizations.

MSC:

49J55 Existence of optimal solutions to problems involving randomness
49Q22 Optimal transportation
60J60 Diffusion processes
49J20 Existence theories for optimal control problems involving partial differential equations
35Q35 PDEs in connection with fluid mechanics
28A50 Integration and disintegration of measures

Software:

Wasserstein GAN
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] R. Aebi and M. Nagasawa, Large deviations and the propagation of chaos for Schrödinger processes, Probab. Theory Related Fields, 94 (1992), pp. 53-68. · Zbl 0767.60056
[2] R. Albert, H. Jeong, and A.-L. Barabási, Error and attack tolerance of complex networks, Nature, 406 (2000), pp. 378-382.
[3] D. Alpago, Y. Chen, T. T. Georgiou, and M. Pavon, On optimal steering for a non-Markovian Gaussian process, in 2019 IEEE 58th Conference on Decision and Control (CDC), 2019, pp. 2556-2561.
[4] J. Altschuler, J. Weed, and P. Rigollet, Near-linear time approximation algorithms for optimal transport via Sinkhorn iteration, in Proc. 31st International Conference on Neural Information Processing Systems, Curran Associates, 2017, pp. 1964-1974.
[5] L. Ambrosio, N. Gigli, and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures, 2nd ed., Lectures in Math. ETH Zürich, Birkhäuser Verlag, Basel, 2008. · Zbl 1145.35001
[6] L. Ambrosio and N. Gigli, A user’s guide to optimal transport, in Modeling and Optimisation of Flows on Networks, Lecture Notes in Math. 2062, B. Piccoli and M. Rascle, eds., Springer, 2013.
[7] S. Angenent, S. Haker, and A. Tannenbaum, Minimizing flows for the Monge-Kantorovich problem, SIAM J. Math. Anal., 35 (2003), pp. 61-97, https://doi.org/10.1137/S0036141002410927. · Zbl 1042.49040
[8] P. Appel, Mémoires sur les déblais et les rémblais, Mém. Acad. Sci. Paris, 29 (1887).
[9] M. Arjovsky, S. Chintala, and L. Bottou, Wasserstein generative adversarial networks, in Proc. 34th International Conference on Machine Learning, 2017, pp. 214-223.
[10] L. Arnold, V. M. Gundlach, and L. Demetrius, Evolutionary formalism for products of positive random matrices, Ann. Appl. Probab., 4 (1994), pp. 859-901. · Zbl 0818.15015
[11] L. Bachelier, Théorie de la spéculation, Ann. Sci. École Norm. Sup., 3 (1900), pp. 21-86. · JFM 31.0241.02
[12] G. Baggio, A. Ferrante, and R. Sepulchre, Finslerian Metrics in the Cone of Spectral Densities, preprint, https://arxiv.org/abs/1708.02818, 2017.
[13] E. Bakolas, Optimal covariance control for discrete-time stochastic linear systems subject to constraints, in 2016 IEEE 55th Conference on Decision and Control (CDC), 2016, pp. 1153-1158.
[14] E. Bakolas, Finite-horizon covariance control for discrete-time stochastic linear systems subject to input constraints, Automatica, 91 (2018), pp. 61-68. · Zbl 1387.93179
[15] E. Bakolas, Covariance control for discrete-time stochastic linear systems with incomplete state information, in 2017 American Control Conference (ACC), 2017, pp. 432-437.
[16] E. Bakolas, Finite-horizon separation-based covariance control for discrete-time stochastic linear systems, in 2018 IEEE 57th Conference on Decision and Control (CDC), 2018, pp. 3299-3304.
[17] E. Bakolas, Dynamic output feedback control of the Liouville equation for discrete-time SISO linear systems, IEEE Trans. Automat. Control, 64 (2019), pp. 4268-4275. · Zbl 1482.93697
[18] R. Bapat, \(D_1AD_2\) theorems for multidimensional matrices, J. Linear Algebra Appl., 48 (1982), pp. 437-442. · Zbl 0503.15008
[19] A.-L. Barabàsi, Network Science, Cambridge University Press, 2014.
[20] M. S. Bazaraa, J. J. Jarvis, and H. D. Sherali, Linear Programming and Network Flows, John Wiley & Sons, 2011. · Zbl 1061.90085
[21] A. Beghi, On the relative entropy of discrete-time Markov processes with given end-point densities, IEEE Trans. Inform. Theory, 42 (1996), pp. 1529-1535. · Zbl 0858.60068
[22] J.-D Benamou and Y. Brenier, A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem, Numer. Math., 84 (2000), pp. 375-393. · Zbl 0968.76069
[23] J.-D. Benamou, G. Carlier, M. Cuturi, L. Nenna, and G. Peyré, Iterative Bregman projections for regularized transportation problems, SIAM J. Sci. Comput., 37 (2015), pp. A1111-A1138, https://doi.org/10.1137/141000439. · Zbl 1319.49073
[24] S. Bernstein, Sur les liaisons entre le grandeurs aleatoires, in Proc. Int. Congr. Math., Zürich, Switzerland, 1932, pp. 288-309. · Zbl 0007.02104
[25] E. Bernton, J. Heng, A. Doucet, and P. E. Jacob, Schrödinger Bridge Samplers, preprint, https://arxiv.org/abs/1912.13170, 2019.
[26] D. Bertsekas, Dynamic Programming and Optimal Control, Vol. 2, Athena Scientific, 1995. · Zbl 0904.90170
[27] A. Beurling, An automorphism of product measures, Ann. of Math. (2), 72 (1960), pp. 189-200. · Zbl 0091.13001
[28] G. Birkhoff, Extensions of Jentzch’s theorem, Trans. Amer. Math. Soc., 85 (1957), pp. 219-227. · Zbl 0079.13502
[29] G. Birkhoff, Uniformly semi-primitive multiplicative processes, Trans. Amer. Math. Soc., 104 (1962), pp. 37-51. · Zbl 0101.33304
[30] A. Blaquière, Controllability of a Fokker-Planck equation, the Schrödinger system, and a related stochastic optimal control, Dynam. Control, 2 (1992), pp. 235-253. · Zbl 0760.93083
[31] D. Bohm, A suggested interpretation of the quantum theory in terms of “hidden” variables. I, Phys. Rev., 85 (1952), pp. 166-179. · Zbl 0046.21004
[32] D. Bohm and B. J. Hiley, Non-locality and locality in the stochastic interpretation of quantum mechanics, Phys. Rep., 172 (1989), pp. 93-122.
[33] D. Bohm and J. P. Vigier, Model of the causal interpretation of quantum theory in terms of a fluid with irregular fluctuations, Phys. Rev., 96 (1954), pp. 208-216. · Zbl 0058.22905
[34] L. Boltzmann, Über die Beziehung zwischen dem zweiten Hauptsatze der mechanischen Wärmetheorie und der Wahrscheinlichkeitsrechnung resp. den Sätzen über das Wärmegleichgewicht, Wiener Berichte, 76 (1877), pp. 373-435; reprinted in Wissenschaftliche Abhandlungen, Vol. 2, J. A. Barth, 1909, pp. 164-223.
[35] M. Bonaldi, L. Conti, P. De Gregorio et al., Nonequilibrium steady-state fluctuations in actively cooled resonators, Phys. Rev. Lett., 103 (2009), art. 010601.
[36] S. Bonnabel, A. Astolfi, and R. Sepulchre, Contraction and observer design on cones, in Proc. Decision and Control and European Control Conference (CDC-ECC), IEEE, 2011, pp. 12-15.
[37] U. Boscain, R. A. Chertovskih, J. P. Gauthier, and A. O. Remizov, Hypoelliptic diffusion and human vision: A semidiscrete new twist, SIAM J. Imaging Sci., 7 (2014), pp. 669-695, https://doi.org/10.1137/130924731. · Zbl 1343.94002
[38] Y. Braiman, J. Barhen, and V. Protopopescu, Control of friction at the nanoscale, Phys. Rev. Lett., 90 (2003), art. 094301.
[39] J. P. Burg, Maximum entropy spectral analysis, in Proc. 37th Meet. Society of Exploration Geophysicists, 1967; reprinted in Modern Spectrum Analysis, D. G. Childers, ed., IEEE Press, 1978, pp. 34-41.
[40] J. Burg, D. Luenberger, and D. Wenger, Estimation of structured covariance matrices, Proc. IEEE, 70 (1982), pp. 963-974.
[41] P. Bushell, On the projective contraction ratio for positive linear mappings, J. London Math. Soc., 2 (1973), pp. 256-258. · Zbl 0255.47048
[42] P. Bushell, Hilbert’s metric and positive contraction mappings in a Banach space, Arch. Rational Mech. Anal., 52 (1973), pp. 330-338. · Zbl 0275.46006
[43] K. F. Caluya and A. Halder, Wasserstein Proximal Algorithms for the Schrödinger Bridge Problem: Density Control with Nonlinear Drift, preprint, https://arxiv.org/abs/1912.01244, 2019.
[44] K. F. Caluya and A. Halder, Reflected Schrödinger Bridge: Density Control with Path Constraints, preprint, https://arxiv.org/abs/2003.13895, 2020. · Zbl 07319983
[45] E. Carlen, Stochastic mechanics: A look back and a look ahead, in Diffusion, Quantum Theory and Radically Elementary Mathematics, W. G. Faris, ed., Math. Notes 47, Princeton University Press, 2006, pp. 117-139.
[46] G. Carlier, V. Duval, G. Peyré, and B. Schmitzer, Convergence of entropic schemes for optimal transport and gradient flows, SIAM J. Math. Anal., 49 (2017), pp. 1385-1418, https://doi.org/10.1137/15M1050264. · Zbl 1365.90197
[47] S. Chandrasekhar, Stochastic problems in physics and astronomy, Rev. Modern Phys., 15 (1943), pp. 1-89. · Zbl 0061.46403
[48] J. T. Chang and David Pollard, Conditioning as disintegration, Statist. Neerlandica, 51 (1997), pp. 287-317. · Zbl 0889.62003
[49] P. Chaudhari, A. Oberman, S. Osher, S. Soatto, and G. Carlier, Deep relaxation: Partial differential equations for optimizing deep neural networks, Res. Math. Sci., 5 (2018), art. 30. · Zbl 1427.82032
[50] Y. Chen, T. T. Georgiou, and M. Pavon, Optimal steering of a linear stochastic system to a final probability distribution, Part I, IEEE Trans. Automat. Control, 61 (2016), pp. 1158-1169. · Zbl 1359.93532
[51] Y. Chen, T. T. Georgiou, and M. Pavon, Optimal steering of inertial particles diffusing anisotropically with losses, in Proc. 2015 American Control Conference (ACC), 2015, pp. 1252-1257.
[52] Y. Chen, T. T. Georgiou, and M. Pavon, Optimal steering of a linear stochastic system to a final probability distribution, Part II, IEEE Trans. Automat. Control, 61 (2016), pp. 1170-1180. · Zbl 1359.93533
[53] Y. Chen, T. T. Georgiou, and M. Pavon, Fast cooling for a system of stochastic oscillators, J. Math. Phys., 56 (2015), art. 113302. · Zbl 1327.82063
[54] Y. Chen, T. T. Georgiou, and M. Pavon, On the relation between optimal transport and Schrödinger bridges: A stochastic control viewpoint, J. Optim. Theory Appl., 169 (2016), pp. 671-691. · Zbl 1344.49072
[55] Y. Chen, T. T. Georgiou, and M. Pavon, Optimal transport over a linear dynamical system, IEEE Trans. Automat. Control, 62 (2017), pp. 2137-2152. · Zbl 1366.49056
[56] Y. Chen, T. T. Georgiou, and M. Pavon, Optimal control of the state statistics for a linear stochastic system, in Proc. 2015 54th IEEE Conference on Decision and Control (CDC), 2015, pp. 6508-6515.
[57] Y. Chen, T. T. Georgiou, and M. Pavon, Steering state statistics with output feedback, in Proc. 2015 54th IEEE Conference on Decision and Control (CDC), 2015, pp. 6502-6507.
[58] Y. Chen, T. T. Georgiou, and M. Pavon, Entropic and displacement interpolation: A computational approach using the Hilbert metric, SIAM J. Appl. Math., 76 (2016), pp. 2375-2396, https://doi.org/10.1137/16M1061382. · Zbl 1369.49064
[59] Y. Chen, T. T. Georgiou, and M. Pavon, Stochastic control, entropic interpolation and gradient flows on Wasserstein product spaces, in Proc. 22nd International Symposium on the Mathematical Theory of Networks and Systems, 2016, http://hdl.handle.net/11299/178610.
[60] Y. Chen, T. T. Georgiou, and M. Pavon, Optimal steering of a linear stochastic system to a final probability distribution, Part III, IEEE Trans. Automat. Control, 63 (2018), pp. 3112-3118. · Zbl 1423.93414
[61] Y. Chen, T. T. Georgiou, and M. Pavon, Optimal transport in systems and control, Ann. Rev. Control Robotics Autonomous Syst., 4 (2021), to appear.
[62] Y. Chen, T. T. Georgiou, and M. Pavon, Controlling uncertainty: Schrödinger’s inference method and the optimal steering of probability distributions, IEEE Control Syst. Mag., to appear.
[63] Y. Chen, T. T. Georgiou, M. Pavon, and A. Tannenbaum, Robust transport over networks, IEEE Trans. Automat. Control, 62 (2017), pp. 4675-4682. · Zbl 1390.90058
[64] Y. Chen, T. T. Georgiou, M. Pavon, and A. Tannenbaum, Efficient-robust routing for single commodity network flows, IEEE Trans. Automat. Control, 63 (2018), pp. 2287-2294. · Zbl 1423.90029
[65] Y. Chen, T. T. Georgiou, M. Pavon, and A. Tannenbaum, Relaxed Schrödinger bridges and robust network routing, IEEE Trans. Control Network Syst., 7 (2020), pp. 923-931. · Zbl 1516.93076
[66] L. Chizat, G. Peyré, B. Schmitzer, and F.-X. Vialard, Scaling algorithms for unbalanced optimal transport problems, Math. Comp., 87 (2018), pp. 2563-2609. · Zbl 1402.90120
[67] V. Ciccone, Y. Chen, T. T. Georgiou, and M. Pavon, Regularized transport between singular covariance matrices, IEEE Trans. Automat. Control, 2020, https://doi.org/10.1109/TAC.2020.3017714. · Zbl 1467.93288
[68] C. Clason, D. A. Lorenz, H. Mahler, and B. Wirth, Entropic regularization of continuous optimal transport problems, J. Math. Anal. Appl., 494 (2021), art. 124432. · Zbl 1457.49031
[69] G. Conforti, A second order equation for Schrödinger bridges with applications to the hot gas experiment and entropic transportation cost, Probab. Theory Related Fields, 174 (2019), pp. 1-47. · Zbl 1481.60152
[70] G. Conforti and M. Pavon, Extremal curves in Wasserstein space, in Proc. Geometric Science of Information: Third International Conference, GSI 2017, Paris, 2017, F. Nielsen and F. Barbaresco, eds., Springer-Verlag, 2017, pp. 92-99. · Zbl 1425.58010
[71] G. Conforti and M. Pavon, Extremal flows in Wasserstein space, J. Math. Phys., 59 (2018), art. 063502. · Zbl 1391.81025
[72] G. Conforti and M. Von Renesse, Couplings, gradient estimates and logarithmic Sobolev inequality for Langevin bridges, Probab. Theory Related Fields, 172 (2018), pp. 493-524. · Zbl 1464.28011
[73] I. Csiszár, I-divergence geometry of probability distributions and minimization problems, Ann. Probab., 3 (1975), pp. 146-158. · Zbl 0318.60013
[74] I. Csiszár, Sanov property, generalized I-projections, and a conditional limit theorem, Ann. Probab., 12 (1984), pp. 768-793. · Zbl 0544.60011
[75] I. Csiszár, Why least squares and maximum entropy? An axiomatic approach to inference for linear inverse problems, Ann. Statist., 19 (1991), pp. 2032-2066. · Zbl 0753.62003
[76] M. Cuturi, Sinkhorn distances: Lightspeed computation of optimal transport, in Advances in Neural Information Processing Systems, 2013, pp. 2292-2300.
[77] P. Dai Pra, A stochastic control approach to reciprocal diffusion processes, Appl. Math. Optim., 23 (1991), pp. 313-329. · Zbl 0728.93079
[78] P. Dai Pra and M. Pavon, On the Markov processes of Schroedinger, the Feynman-Kac formula and stochastic control, in Realization and Modeling in System Theory (Proc. 1989 International Symposium on the Mathematical Theory of Networks and Systems), M. A. Kaashoek, J. H. van Schuppen, and A. C. M. Ran, eds., Birkhäuser, Boston, 1990, pp. 497-504. · Zbl 0726.60066
[79] D. Dawson, L. Gorostiza, and A. Wakolbinger, Schrödinger processes and large deviations, J. Math. Phys., 31 (1990), pp. 2385-2388. · Zbl 0736.60071
[80] J.-C. Delvenne and A.-S. Libert, Centrality measures and thermodynamic formalism for complex networks, Phys. Rev., 83 (2011), art. 046117.
[81] A. Dembo and O. Zeitouni, Large Deviations Techniques and Applications, Jones and Bartlett, Boston, 1993. · Zbl 0793.60030
[82] L. Demetrius and T. Manke, Robustness and network evolution: An entropic principle, Phys. A, 346 (2005), pp. 682-696.
[83] W. E. Deming and F. F. Stephan, On a least squares adjustment of a sampled frequency table when the expected marginal totals are known, Ann. Math. Statist., 11 (1940), pp. 427-444. · JFM 66.0652.02
[84] A. P. Dempster, Covariance selection, Biometrics, 28 (1972), pp. 157-175.
[85] S. Di Marino and A. Gerolin, An optimal transport approach for the Schrödinger bridge problem and convergence of Sinkhorn algorithm, J. Sci. Comput., 85 (2020), pp. 1-28. · Zbl 1478.49043
[86] M. Doi and S. F. Edwards, The Theory of Polymer Dynamics, Oxford University Press, New York, 1988.
[87] J. L. Doob, A Markov chain theorem, in Probability and Statistics: The Harold Cramer Volume, John Wiley, 1959, pp. 50-57. · Zbl 0095.12701
[88] J. L. Doob, Classical Potential Theory and Its Probabilistic Counterpart, Springer-Verlag, Berlin, 1984. · Zbl 0549.31001
[89] D. Durr and A. Bach, The Onsager-Machlup functional as Lagrangian for the most probable path of a diffusion process, Comm. Math. Phys., 60 (1978), pp. 153-170. · Zbl 0377.60044
[90] R. S. Ellis, Entropy, Large Deviations, and Statistical Mechanics, Springer-Verlag, New York, 1985. · Zbl 0566.60097
[91] M. Essid and M. Pavon, Traversing the Schrödinger Bridge strait: Robert Fortet’s marvelous proof redux, J. Optim. Theory Appl., 181 (2019), pp. 23-60. · Zbl 1414.49046
[92] L. C. Evans, Partial differential equations and Monge-Kantorovich mass transfer, in Current Developments in Mathematics, Int. Press, Boston, 1999, pp. 65-126. · Zbl 0954.35011
[93] I. Favero and K. Karrai, Optomechanics of deformable optical cavities, Nat. Photon., 3 (2009), pp. 201-205.
[94] S. E. Fienberg, An iterative procedure for estimation in contingency tables, Ann. Math. Statist., 41 (1970), pp. 907-917. · Zbl 0198.23401
[95] R. Filliger and M.-O. Hongler, Relative entropy and efficiency measure for diffusion-mediated transport processes, J. Phys. A, 38 (2005), pp. 1247-1255. · Zbl 1082.82014
[96] R. Filliger, M.-O. Hongler, and L. Streit, Connection between an exactly solvable stochastic optimal control problem and a nonlinear reaction-diffusion equation, J. Optim. Theory Appl., 137 (2008), pp. 497-505. · Zbl 1144.93031
[97] M. Fischer, On the form of the large deviation rate function for the empirical measures of weakly interacting systems, Bernoulli, 20 (2014), pp. 1765-1801. · Zbl 1327.60070
[98] W. H. Fleming and R. W. Rishel, Deterministic and Stochastic Optimal Control, Springer-Verlag, Berlin, 1975. · Zbl 0323.49001
[99] W. H. Fleming, Exit probabilities and optimal stochastic control, Appl. Math. Optim., 4 (1978), pp. 329-346. · Zbl 0398.93068
[100] W. H. Fleming, Logarithmic transformation and stochastic control, in Advances in Filtering and Optimal Stochastic Control, W. H. Fleming and L. G. Gorostiza, eds., Lect. Notes Control Inform. Sci. 42, Springer-Verlag, 1982, pp. 131-141. · Zbl 0502.93076
[101] W. Fleming and S. Sheu, Stochastic variational formula for fundamental solutions of parabolic PDE, Appl. Math. Optim., 13 (1985), pp. 193-204. · Zbl 0579.49013
[102] H. Föllmer, Time reversal on Wiener space, in Stochastic Processes: Mathematics and Physics, Lecture Notes in Math. 1158, Springer-Verlag, New York, 1986, pp. 119-129. · Zbl 0582.60078
[103] H. Föllmer, Random fields and diffusion processes, in Ècole d’Ètè de Probabilitès de Saint-Flour XV-XVII, P. L. Hennequin, ed., Lecture Notes in Math. 1362, Springer-Verlag, New York, 1988, pp. 102-203. · Zbl 0661.60063
[104] F. Forni and R. Sepulchre, Differentially positive systems, IEEE Trans. Automat. Control, 61 (2016), pp. 346-359. · Zbl 1359.93391
[105] R. Fortet, Résolution d’un système d’equations de M. Schrödinger, Comptes Rendus, 206 (1938), pp. 721-723. · Zbl 0018.13204
[106] R. Fortet, Résolution d’un système d’equations de M. Schrödinger, J. Math. Pures Appl., 19 (1940), pp. 83-105. · Zbl 0024.31803
[107] J. B. J. Fourier, Solution d’une question particuliére du calcul des inégalités, Nouveau Bull. Sci. Soc. Philomatique Paris (1826), pp. 99-100; reprinted in Oeuvres de Fourier, Tome II, J. G. Darboux, ed., Gauthier, 1890.
[108] J. Franklin and J. Lorenz, On the scaling of multidimensional matrices, Linear Algebra Appl., 114 (1989), pp. 717-735. · Zbl 0674.15001
[109] A. Galichon, Optimal Transport Methods in Economics, Princeton University Press, 2016.
[110] W. Gangbo and R. McCann, The geometry of optimal transportation, Acta Math., 177 (1996), pp. 113-161. · Zbl 0887.49017
[111] I. Gentil, C. Léonard, and L. Ripani, About the analogy between optimal transport and minimal entropy, Ann. Fac. Sci. Toulouse Math. (6), 26 (2017), pp. 569-600. · Zbl 1380.49067
[112] T. T. Georgiou and M. Pavon, Positive contraction mappings for classical and quantum Schrödinger systems, J. Math. Phys., 56 (2015), art. 033301. · Zbl 1322.81057
[113] N. Gigli, Second order analysis on \((\mathcal{P}_2(M),W_2)\), Mem. Amer. Math. Soc., 216 (2012), no. 1018. · Zbl 1253.58008
[114] M. Goldshtein and P. Tsiotras, Finite-horizon covariance control of linear time-varying systems, in 2017 IEEE 56th Conference on Decision and Control (CDC), 2017, pp. 3606-3611.
[115] K. M. Grigoriadis and R. E. Skelton, Minimum-energy covariance controllers, Automatica, 33 (1997), pp. 569-578. · Zbl 0879.93056
[116] F. Guerra and L. Morato, Quantization of dynamical systems and stochastic control theory, Phys. Rev. D, 27 (1983), pp. 1774-1786.
[117] F. Guerra, Unpublished notes, March \(1987\), and talk delivered at the workshop “Stochastic Dynamical Systems in Physics,” Padua, 1988.
[118] A. Halder and E. D. Wendel, Finite horizon linear quadratic Gaussian density regulator with Wasserstein terminal cost, in Proc. IEEE Amer. Control Conf., 2016, pp. 7249-7254.
[119] H. von Helmholtz, Physical Memoirs Selected and Translated from Foreign Sources, Taylor and Francis, 1882. · JFM 01.0344.02
[120] D. B. Hernandez and M. Pavon, Equilibrium description of a particle system in a heat bath, Acta Appl. Math., 14 (1989), pp. 239-256. · Zbl 0682.93067
[121] D. Hilbert, Über die gerade linie als kürzeste verbindung zweier punkte, Math. Ann., 46 (1895), pp. 91-96. · JFM 26.0540.02
[122] C. J. Holland, A new energy characterization of the smallest eigenvalue of the Schrödinger equation, Comm. Pure Appl. Math., 30 (1977), pp. 755-765. · Zbl 0358.35060
[123] L. Hörmander, Hypoelliptic second order differential equations, Acta Math., 119 (1967), pp. 147-171. · Zbl 0156.10701
[124] R. Horn and C. Johnson, Matrix Analysis, Cambridge University Press, 2012.
[125] A. F. Hotz and R. E. Skelton, A covariance control theory, in 24th IEEE Conference on Decision and Control (CDC), 1985, pp. 552-557.
[126] A. Hotz and R. E. Skelton, Covariance control theory, Internat. J. Control, 46 (1987), pp. 13-32. · Zbl 0626.93080
[127] C. T. Ireland and S. Kullback, Contingency tables with given marginals, Biometrika, 55 (1968), pp. 179-188. · Zbl 0155.26701
[128] K. Itô and S. Watanabe, Transformation of Markov processes by multiplicative functionals, Ann. Inst. Fourier (Grenoble), 15 (1965), pp. 13-30. · Zbl 0141.15103
[129] B. Jamison, Reciprocal processes, Z. Wahrsch. Verw. Gebiete, 30 (1974), pp. 65-86. · Zbl 0326.60033
[130] B. Jamison, The Markov processes of Schrödinger, Z. Wahrsch. Verw. Gebiete, 32 (1975), pp. 323-331. · Zbl 0365.60064
[131] E. T. Jaynes, Information theory and statistical mechanics, Phys. Rev. (2), 106 (1957), pp. 620-630. · Zbl 0084.43701
[132] E. T. Jaynes, Information theory and statistical mechanics II, Phys. Rev. (2), 108 (1957), pp. 171-190. · Zbl 0084.43701
[133] E. T. Jaynes, On the rationale of maximum-entropy methods, Proc. IEEE, 70 (1982), pp. 939-952.
[134] X. Jiang, Z. Luo, and T. T. Georgiou, Geometric methods for spectral analysis, IEEE Trans. Signal Process., 60 (2012), pp. 1064-1074. · Zbl 1393.94285
[135] J. Johnson, Thermal agitation of electricity in conductors, Phys. Rev., 32 (1928), pp. 97-109.
[136] R. Jordan, D. Kinderlehrer, and F. Otto, The variational formulation of the Fokker-Planck equation, SIAM J. Math. Anal., 29 (1998), pp. 1-17, https://doi.org/10.1137/S0036141096303359. · Zbl 0915.35120
[137] L. V. Kantorovich, Mathematical Methods in the Organization and Planning of Production, Leningrad University, 1939 (in Russian); Management Sci., 6 (1960), pp. 363-422 (in English).
[138] L.V. Kantorovich, On translocation of masses, C. R. (Doklady) Acad. Sci. URSS (N.S.), 37 (1942), pp. 227-229 (in Russian); J. Math. Sci., 133 (2006), pp. 1381-1382 (in English). · Zbl 1080.49507
[139] L. V. Kantorovich, On a problem of Monge, Uspekhi Mat. Nauk, 3 (1948), pp. 225-226 (in Russian); J. Math. Sci. (N.Y.), 133 (2006), art. 1383 (in English). · Zbl 1080.49508
[140] L. V. Kantorovich and G. S. Rubinshtein, On a space of totally additive functions, Vestn. Leningrad. Univ., 13 (1958), pp. 52-59 (in Russian). · Zbl 0082.11001
[141] E. Kappler, Versuche zur Messung der Avogadro-Loschmidtschen Zahl aus der Brownschen Bewegung einer Drehwaage, Ann. Phys., 11 (1931), pp. 233-256.
[142] I. Karatzas, On a stochastic representation for the principal eigenvalue of a second-order differential equation, Stochastics, 3 (1980), pp. 305-321. · Zbl 0434.60065
[143] I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus, Springer-Verlag, New York, 1988. · Zbl 0638.60065
[144] S. Karlin and H. Taylor, A Second Course in Stochastic Processes, Academic Press, 1981. · Zbl 0469.60001
[145] K. H. Kim and H. Qian, Entropy production of Brownian macromolecules with inertia, Phys. Rev. Lett., 93 (2004), art. 120602.
[146] W. Kliemann, Recurrence and invariant measures for degenerate diffusions, Ann. Probab., 15 (1987), pp. 690-707. · Zbl 0625.60091
[147] A. Kolmogorov, Zur Umkehrbarkeit der statistischen Naturgesetze, Math. Ann., 113 (1937), pp. 766-772. · Zbl 0015.26004
[148] J. Kruithof, Telefoonverkeersrekening, De Ingenieur, 52 (1937), pp. E15-E25.
[149] P. Langevin, Sur la théorie du mouvement Brownien, C. R. Acad. Sci. (Paris), 146 (1908), pp. 530-533. · JFM 39.0847.03
[150] H. Lavenant, S. Claici, E. Chien, and J. Solomon, Dynamical optimal transport on discrete surfaces, ACM Trans. Graph., 37 (2018), art. 250.
[151] E. B. Lee and L. Markus, Foundations of Optimal Control Theory, New York, Wiley, 1967. · Zbl 0159.13201
[152] F. Léger, A geometric perspective on regularized optimal transport, J. Dynam. Differential Equations, 31 (2019), pp. 1777-1791. · Zbl 1429.49049
[153] F. Léger and W. Li, Hopf-Cole transformation and Schrödinger problems, in Geometric Science of Information (GSI 2019), Lecture Notes in Comput. Sci. 11712, F. Nielsen and F. Barbaresco, eds., Springer, 2019, pp. 733-738. · Zbl 1458.60013
[154] B. Lemmens and R. Nussbaum, Nonlinear Perron-Frobenius Theory, Cambridge Tracts in Math. 189, Cambridge University Press, 2012. · Zbl 1246.47001
[155] B. Lemmens and R. Nussbaum, Birkhoff’s version of Hilbert’s metric and its applications in analysis, in Handbook of Hilbert Geometry, G. Besson, A. Papadopoulos, and M. Troyanov, eds., European Mathematical Society, Zürich, 2014, pp. 275-306.
[156] C. Léonard, From the Schrödinger problem to the Monge-Kantorovich problem, J. Funct. Anal., 262 (2012), pp. 1879-1920. · Zbl 1236.49088
[157] C. Léonard, A survey of the Schroedinger problem and some of its connections with optimal transport, Discrete Contin. Dyn. Syst. A, 34 (2014), pp. 1533-1574. · Zbl 1277.49052
[158] C. Léonard, Lazy random walks and optimal transport on graphs, Ann. Probab., 44 (2016), pp. 1864-1915. · Zbl 1397.60109
[159] C. Léonard, Revisiting Fortet’s Proof of Existence of a Solution to the Schrödinger System, preprint, https://arxiv.org/abs/1904.13211, 2019.
[160] B. C. Levy, R. Frezza, and A. J. Krener, Modeling and estimation of discrete-time Gaussian reciprocal processes, IEEE Trans. Automat. Control, 35 (1990), pp. 1013-1023. · Zbl 0709.60043
[161] W. Li, P. Yin, and S Osher, Computations of optimal transport distance with Fisher information regularization, J. Sci. Comput., 75 (2018), pp. 1581-1595. · Zbl 1415.49030
[162] S. Liang, D. Medich, D. M. Czajkowsky, S. Sheng, J. Yuan, and Z. Shao, Thermal noise reduction of mechanical oscillators by actively controlled external dissipative forces, Ultramicroscopy, 84 (2000), pp. 119-125.
[163] C. Liverani and M. P. Wojtkowski, Generalization of the Hilbert metric to the space of positive definite matrices, Pacific J. Math., 166 (1994), pp. 339-355. · Zbl 0824.53019
[164] J. Lott, Some geometric calculations on Wasserstein space, Comm. Math. Phys., 277 (2008), pp. 423-437. · Zbl 1144.58007
[165] F. Marquardt and S. M. Girvin, Optomechanics, Physics, 2 (2009), art. 40.
[166] J. C. Maxwell, On governors, Proc. Roy. Soc., 100 (1868), pp. 270-282. · JFM 01.0337.01
[167] R. McCann, A convexity principle for interacting gases, Adv. Math., 128 (1997), pp. 153-179. · Zbl 0901.49012
[168] T. Mikami, Monge’s problem with a quadratic cost by the zero-noise limit of \(h\)-path processes, Probab. Theory Related Fields, 129 (2004), pp. 245-260. · Zbl 1061.58034
[169] T. Mikami and M. Thieullen, Duality theorem for the stochastic optimal control problem, Stochastic Process. Appl., 116 (2006), pp. 1815-1835. · Zbl 1118.93056
[170] T. Mikami and M. Thieullen, Optimal transportation problem by stochastic optimal control, SIAM J. Control Optim., 47 (2008), pp. 1127-1139, https://doi.org/10.1137/050631264. · Zbl 1175.93245
[171] J. M. W. Milatz, J. J. Van Zolingen, and B. B. Van Iperen, The reduction in the Brownian motion of electrometers, Physica, 19 (1953), pp. 195-202.
[172] S. Mitter, Non-linear filtering and stochastic mechanics, in Stochastic Systems: The Mathematics of Filtering and Identification and Applications, M. Hazewinkel and J. C. Willems, eds., Reidel, 1981, pp. 479-503.
[173] G. Monge, Mémoire sur la théorie des déblais et des remblais, in Histoire de l’Academie Royale des Sciences avec les Mémoires de Mathématique et de Physique, De l’Imprimerie Royale, 1781, pp. 666-704.
[174] P. Monteiller, S. Claici, E. Chien, F. Mirzazadeh, J. Solomon, and M. Yurochkin, Alleviating label switching with optimal transport, Adv. Neural Inform. Process. Syst., 32 (2019), pp. 13612-13622.
[175] M. Nagasawa, Stochastic variational principle of Schrödinger processes, in Seminar on Stochastic Processes, Birkhäuser, 1989, pp. 165-175. · Zbl 0695.60076
[176] E. Nelson, Dynamical Theories of Brownian Motion, Princeton University Press, Princeton, NJ, 1967. · Zbl 0165.58502
[177] E. Nelson, Quantum Fluctuations, Princeton University Press, Princeton, NJ, 1985. · Zbl 0563.60001
[178] E. Nelson, Afterword, in Diffusion, Quantum Theory and Radically Elementary Mathematics, W. G. Faris, ed., Math. Notes 47, Princeton University Press, Princeton, NJ, 2006, pp. 229-232. · Zbl 1104.81003
[179] H. Nyquist, Thermal agitation of electric charge in conductors, Phys. Rev., 32 (1928), pp. 110-113.
[180] J. J. O’Connor and E. F. Robertson, Jean Baptiste Joseph Fourier, MacTutor (Fourier), http://www-history.mcs.st-andrews.ac.uk/Biographies/Fourier.html.
[181] K. Okamoto, M. Goldshtein, and P. Tsiotras, Optimal covariance control for stochastic systems under chance constraints, IEEE Control Syst. Lett., 2 (2018), pp. 266-271.
[182] K. Okamoto and P. Tsiotras, Optimal stochastic vehicle path planning using covariance steering, IEEE Robotics Automat. Lett., 4 (2019), pp. 2276-2281.
[183] K. Okamoto and P. Tsiotras, Input hard constrained optimal covariance steering, in 2019 IEEE 58th Conference on Decision and Control (CDC), 2019, pp. 3497-3502.
[184] O. A. Olejnik and E. V. Radkevic, Second Order Equations with Nonnegative Characteristic Form, AMS, Providence, RI, 1973.
[185] Y. Ollivier, H. Pajot, and C. Villani, Optimal Transportation. Theory and Applications, London Math. Soc. Lect. Notes Ser. 413, Cambridge University Press, 2014. · Zbl 1301.00076
[186] N. K. Olver, Robust Network Design, Ph.D. Dissertation, Department of Mathematics and Statistics, McGill University, 2010. · Zbl 1288.68274
[187] L. Onsager and S. Machlup, Fluctuations and irreversible processes, I, Phys. Rev., 91 (1953), pp. 1505-1512. · Zbl 0053.15106
[188] L. Onsager and S. Machlup, Fluctuations and irreversible processes, II, Phys. Rev., 91 (1953), pp. 1512-1515. · Zbl 0053.15107
[189] F. Otto, The geometry of dissipative evolution equations: The porous medium equation, Comm. Partial Differential Equations, 26 (2001), pp. 101-174. · Zbl 0984.35089
[190] W. Parry, Intrinsic Markov chains, Trans. Amer. Math. Soc., 112 (1964), pp. 55-66. · Zbl 0127.35301
[191] G. A. Pavliotis, Stochastic Processes and Applications, Springer, Berlin, 2014. · Zbl 1318.60003
[192] M. Pavon and A. Wakolbinger, On free energy, stochastic control, and Schroedinger processes, in Modeling, Estimation and Control of Systems with Uncertainty, G. B. Di Masi, A. Gombani, A. Kurzhanski, eds., Birkhäuser, Boston, 1991, pp. 334-348. · Zbl 0731.93081
[193] M. Pavon and F. Ticozzi, On entropy production for controlled Markovian evolution, J. Math. Phys., 47 (2006), art. 06330. · Zbl 1112.82025
[194] M. Pavon and F. Ticozzi, Discrete-time classical and quantum Markovian evolutions: Maximum entropy problems on path space, J. Math. Phys., 51 (2010), art. 042104. · Zbl 1310.81105
[195] M. Pavon and A. Ferrante, On the geometry of maximum entropy problems, SIAM Rev., 55 (2013), pp. 415-439, https://doi.org/10.1137/120862843. · Zbl 1306.94011
[196] M. Pavon, E. G. Tabak, and G. Trigila, The data-driven Schrödinger bridge, Comm. Pure Appl. Math., 2021, https://doi.org/10.1002/cpa.21975. · Zbl 07381996
[197] J. Perrin, Brownian Movement and Molecular Reality, translated from Annales de Chimie et de Physique, 8me Series, 1909, by F. Soddy, Taylor and Francis, London, 1910.
[198] G. Peyré and M. Cuturi, Computational optimal transport, Found. Trends Mach. Learn., 11 (2019), pp. 1-257. · Zbl 1475.68011
[199] M. Poot and H. S. J. van der Zant, Mechanical systems in the quantum regime, Phys. Rep., 511 (2012), pp. 273-335.
[200] M. L. Puterman, Markov Decision Processes, John Wiley, 1994. · Zbl 0829.90134
[201] H. Qian, Relative entropy: Free energy associated with equilibrium fluctuations and nonequilibrium deviations, Phys. Rev. E, 63 (2001), art. 042103.
[202] T. Rachev and L. Rüschendorf, Mass Transportation Problems, Vol. I: Theory, Probab. Appl. (N. Y.), Springer-Verlag, New York, 1998. · Zbl 0990.60500
[203] T. Rachev and L. Rüschendorf, Mass Transportation Problems, Vol. II: Applications, Probab. Appl. (N. Y.), Springer-Verlag, New York, 1998. · Zbl 0990.60500
[204] D. Reeb, M. J. Kastoryano, and M. M. Wolf, Hilbert’s projective metric in quantum information theory, J. Math. Phys., 52 (2011), art. 082201. · Zbl 1272.81033
[205] J. Ridderhof and P. Tsiotras, Uncertainty quantification and control during Mars powered descent and landing using covariance steering, in AIAA Guidance, Navigation, and Control Conference, Kissimmee, FL, 2018.
[206] J. Ridderhof and P. Tsiotras, Minumum-fuel powered descent in the presence of random disturbances, in AIAA Guidance, Navigation, and Control Conference, San Diego, CA, 2019.
[207] J. Ridderhof, K. Okamoto, and P. Tsiotras, Nonlinear uncertainty control with iterative covariance steering, in 2019 IEEE 58th Conference on Decision and Control (CDC), 2019, pp. 3484-3490.
[208] J. Ridderhof, K. Okamoto, and P. Tsiotras, Chance constrained covariance control for linear stochastic systems with output feedback, in Proceedings of the 59th IEEE Conference on Decision and Control (CDC), IEEE, 2020, pp. 1758-1763, https://doi.org/10.1109/CDC42340.2020.9303731.
[209] T. Rockafellar, Convex Analysis, Princeton University Press, 1970. · Zbl 0193.18401
[210] D. Ruelle, Thermodynamic Formalism: The Mathematical Structure of Equilibrium Statistical Mechanics, Cambridge University Press, 2004. · Zbl 1062.82001
[211] I. S. Sanov, On the probability of large deviations of random magnitudes, Mat. Sb. N. S., 42 (1957), pp. 11-44 (in Russian); Select. Transl. Math. Statist. Probab., 1 (1961), pp. 213-244 (in English). · Zbl 0112.10106
[212] K. Savla, G. Como, and M. A. Dahleh, Robust network routing under cascading failures, IEEE Trans. Network Sci. Engrg., 1 (2014), pp. 53-66.
[213] P. A. Schilpp, ed., Albert Einstein: Philosopher-Scientist, in The Library of Living Philosophers, Vol. VII, The Library of Living Philosophers, Inc., Evanston, IL, 1949. · Zbl 0038.14804
[214] E. Schrödinger, Collected Papers on Wave Mechanics, translated by J. F. Shearer and W. M. Deans, Blackie & Son Ltd., London, 1928. · JFM 54.0963.02
[215] E. Schrödinger, Über die Umkehrung der Naturgesetze, Sitzungsberichte der Preuss Akad. Wissen. Berlin, Phys. Math. Klasse, 10 (1931), pp. 144-153. · Zbl 0001.37503
[216] E. Schrödinger, Sur la théorie relativiste de l’électron et l’interpretation de la mécanique quantique, Ann. Inst. H. Poincaré, 2 (1932), pp. 269-310. · Zbl 0004.42505
[217] E. Schrödinger, The meaning of wave mechanics, in Louis de Broglie Physicien et Penseur, A. George, ed., éditions Albin Michel, Paris, 1953, pp. 16-30.
[218] K. C. Schwab and M. L. Roukes, Putting mechanics into quantum mechanics, Phys. Today, 58 (2005), pp. 36-42.
[219] R. Sepulchre, A. Sarlette, and P. Rouchon, Consensus in non-commutative spaces, in the 49th IEEE Conference on Decision and Control (CDC), 2010, pp. 6596-6601.
[220] R. Sandhu, T. T. Georgiou, E. Reznik, L. Zhu, I. Kolesov, Y. Senbabaoglu, and A. Tannenbaum, Graph curvature for differentiating cancer networks, Sci. Rep., 5 (2015), pp. 1-13.
[221] R. Sandhu, T. T. Georgiou, and A. R. Tannenbaum, Ricci curvature: An economic indicator for market fragility and systemic risk, Sci. Adv., 2 (2016), art. e1501495.
[222] R. Skelton and M. Ikeda, Covariance controllers for linear continuous-time systems, Internat. J. Control, 49 (1989), pp. 1773-1785. · Zbl 0676.93080
[223] R. Sinkhorn, A relationship between arbitrary positive matrices and doubly stochastic matrices, Ann. Math. Statist., 35 (1964), pp. 876-879. · Zbl 0134.25302
[224] R. Sinkhorn, Diagonal equivalence to matrices with prescribed row and column sums, Amer. Math. Monthly, 74 (1967), pp. 402-405. · Zbl 0166.03702
[225] R. Sinkhorn and P. Knopp, Concerning nonnegative matrices and doubly stochastic matrices, Pacific J. Math., 21 (1967), pp. 343-348. · Zbl 0152.01403
[226] J. Solomon, L. Guibas, and A, Butscher, Dirichlet energy for analysis and synthesis of soft maps, Comput. Graphics Forum, 32 (2013), pp. 197-206.
[227] J. Solomon, R. Rustamov, L. Guibas, and A. Butscher, Earth mover’s distances on discrete surfaces, ACM Trans. Graphics, 33 (2014), art. 67. · Zbl 1396.65063
[228] J. Solomon, R. Rustamov, G. Leonidas, and A. Butscher, Wasserstein propagation for semi-supervised learning, in Proc. 31st International Conference on Machine Learning (ICML-14), 2014, pp. 306-314.
[229] J. Solomon, F. De Goes, G. Peyré, M. Cuturi, A. Butscher, A. Nguyen, T. Du, and L. Guibas, Convolutional Wasserstein distances: Efficient optimal transportation on geometric domains, ACM Trans. Graphics, 34 (2015), art. 66. · Zbl 1334.68267
[230] J. Solomon, G. Peyré, V. G. Kim, and S. Sra, Entropic metric alignment for correspondence problems, ACM Trans. Graphics, 35 (2016), art. 72.
[231] J. Solomon, R. Rustamov, L. Guibas, and A. Butscher, Continuous-Flow Graph Transportation Distances, preprint, https://arxiv.org/abs/1603.06927, 2016.
[232] E. G. Tabak and G. Trigila, Explanation of variability and removal of confounding factors from data through optimal transport, Comm. Pure Appl. Math., 71 (2018), pp. 163-199. · Zbl 1381.49052
[233] Y. Takahashi and S. Watanabe, The probability functionals (Onsager-Machlup functions) of diffusion processes, in Stochastic Integrals, Lecture Notes in Math. 851, Springer-Verlag, Berlin, 1980, pp. 433-463. · Zbl 0538.58039
[234] A. Thibault, L. Chizat, C. Dossal, and N. Papadakis, Overrelaxed Sinkhorn-Knopp Algorithm for Regularized Optimal Transport, Technical report, presented at the NIPS 2017 Workshop on Optimal Transport & Machine Learning, 2017, https://arxiv.org/abs/1711.01851.
[235] A. Thompson, On certain contraction mappings in a partially ordered vector space, Proc. Amer. Math. Soc., 14 (1963), pp. 438-443. · Zbl 0147.34903
[236] A. N. Tolstoi, Metody nakhozhdeniya naimen shego summovogo kilometrazha pri planirovanii perevozok v prostranstve (“Methods of finding the minimal total mileage in cargo transportation planning in space”), TransPress Natl. Commissariat Transport., 1 (1930), pp. 23-55.
[237] A. N. Tolstoi, Metody ustraneniya neratsional nykh perevozok priplanirovanii (“Methods of removing irrational transportation in planning”), Sotsialisticheski Transport, 9 (1939), pp. 28-51.
[238] J. Tsitsiklis, D. Bertsekas, and M. Athans, Distributed asynchronous deterministic and stochastic gradient optimization algorithms, IEEE Trans. Automat. Control, 31 (1986), pp. 803-812. · Zbl 0602.90120
[239] G. E. Uhlenbeck and L. S. Ornstein, On the theory of Brownian motion, Phys. Rev., 36 (1930), pp. 823-841. · JFM 56.1277.03
[240] L. N. Vasershtein, Markov processes over denumerable products of spaces describing large system of automata, Problems Inform. Transmission, 5 (1969), pp. 47-52. · Zbl 0273.60054
[241] A. M. Vershik, Long history of the Monge-Kantorovich problem, Math. Intelligencer, 35 (2013), pp. 1-9. · Zbl 1284.01041
[242] C. Villani, Topics in Optimal Transportation, Grad. Stud. Math. 58, AMS, 2003. · Zbl 1106.90001
[243] C. Villani, Optimal Transport. Old and New, Grundlehren Math. Wiss. 338, Springer-Verlag, 2009. · Zbl 1156.53003
[244] A. Vinante, M. Bignotto, M. Bonaldi et al., Feedback cooling of the normal modes of a massive electromechanical system to submillikelvin temperature, Phys. Rev. Lett., 101 (2008), art. 033601.
[245] M. K. von Renesse, An optimal transport view on Schrödinger’s equation, Canad. Math. Bull., 55 (2012), pp. 858-869. · Zbl 1256.81072
[246] A. Wakolbinger, A simplified variational characterization of Schrödinger processes, J. Math. Phys., 30 (1989), pp. 2943-2946. · Zbl 0692.60060
[247] A. Wakolbinger, Schrödinger Bridges from \(1931\) to \(1991\), in Proc. 4th Latin American Congress in Probability and Mathematical Statistics, Mexico City, 1990, Contribuciones en Probabilidad y Estadistica Matematica 3, 1992, pp. 61-79.
[248] N. Wiener, Differential space, J. Math. Phys., 2 (1923), pp. 132-174.
[249] J.-H. Xu and R. E. Skelton, An improved covariance assignment theory for discrete systems, IEEE Trans. Automat. Control, 37 (1992), pp. 1588-1591. · Zbl 0777.93062
[250] K. Yasue, Stochastic calculus of variations, J. Funct. Anal., 41 (1981), pp. 327-340. · Zbl 0482.60063
[251] Z. Yi, Z. Cao, E. Theodorou, and Y. Chen, Nonlinear covariance control via differential dynamic programming, in Proc. 2020 American Control Conference (ACC), IEEE, 2020, pp. 3571-3576.
[252] G. U. Yule, On the methods of measuring association between two attributes, J. Roy. Statist. Soc., 75 (1912), pp. 579-652.
[253] J. C. Zambrini, Stochastic mechanics according to E. Schrödinger, Phys. Rev. A, 33 (1986), pp. 1532-1548.
[254] G. Zhu, K. M. Grigoriadis, and R. E. Skelton, Covariance control design for Hubble space telescope, J. Guidance Control Dynam., 18 (1995), pp. 230-236.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.