×

Gravitation and inertia; a rearrangement of vacuum in gravity. (English) Zbl 1187.83066

Summary: We address gravitation and inertia in the framework of a general gauge principle (GGP) which accounts for the gravitation gauge group \(G _{R }\) generated by a hidden local internal symmetry implemented on the flat space. Following the method of phenomenological Lagrangians, we connect the group \(G _{R }\) to a non-linear realization of the Lie group of the distortion \(G _{D }\) of the local internal properties of six-dimensional flat space, \(M _{6}\), which is assumed as a toy model underlying four-dimensional Minkowski space. We study the geometrical structure of the space of parameters and derive the Maurer-Cartan’s structure equations. We treat distortion fields as Goldstone fields, to which the metric and connection are related, and we infer the group invariants and calculate the conserved currents. The agreement between the proposed gravitational theory and available observational verifications is satisfactory. Unlike the GR, this theory is free of fictitious forces, which prompts us to address separately the inertia from a novel view point. We construct a relativistic field theory of inertia, which treats inertia as a distortion of local internal properties of flat space \(M _{2}\) conducted under the distortion inertial fields. We derive the relativistic law of inertia (RLI) and calculate the inertial force acting on the photon in a gravitating system. In spite of the totally different and independent physical sources of gravitation and inertia, the RLI furnishes a justification for the introduction of the Principle of Equivalence. Particular attention is given to the realization of the group \(G _{R }\) by the hidden local internal symmetry of the abelian group \(U ^{\text{loc}}=U(1)_{Y }\times diag[SU(2)]\), implemented on the space \(M _{6}\). This group has two generators, the third component \(T ^{3}\) of isospin and the hypercharge \(Y\), implying \(Q ^{d }=T ^{3}+Y/2\), where \(Q ^{d }\) is the distortion charge operator assigning the number \(- 1\) to particles, but \(+1\) to anti-particles. This entails two neutral gauge bosons that coupled to \(T ^{3}\) and \(Y\). We address the rearrangement of the vacuum state in gravity resulting from these ideas. The neutral complex Higgs scalar breaks the vacuum symmetry leaving the gravitation subgroup intact. The resulting massive distortion field component may cause an additional change of properties of the spacetime continuum at huge energies above the threshold value.

MSC:

83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
83C10 Equations of motion in general relativity and gravitational theory
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Bargman, V., Wigner, E.: Proc. Am. Acad. Sci. 34, 211 (1948) · Zbl 0030.42306 · doi:10.1073/pnas.34.5.211
[2] Basini, G., Capozziello, S.: Int. J. Mod. Phys. D 15, 583 (2006) · Zbl 1101.83034 · doi:10.1142/S0218271806008310
[3] Bertotti, B., Giampieri, G.: Class. Quantum Gravity 9, 777 (1992) · doi:10.1088/0264-9381/9/3/016
[4] Bertotti, B., Iess, L., Tortora, P.: A test of general relativity using radio links with the Cassini spacecraft. Nature 425, 374 (2003) · doi:10.1038/nature01997
[5] Birrell, N.D., Davies, P.C.W.: Quantum Fields in Curved Space. Cambridge University Press, Cambridge (1982) · Zbl 0476.53017
[6] Borisov, A.B., Ogievetsky, V.I.: Theor. Math. Physics 21(3), 329 (1974)
[7] Callan, C.L., Coleman, S., Wess, J., Zumino, B.: Phys. Rev. 177, 2247 (1969) · doi:10.1103/PhysRev.177.2247
[8] Capozziello, S., De Laurentis, M.: Int. J. Geom. Methods Mod. Phys. 6, 1 (2009a) · Zbl 1166.83013 · doi:10.1142/S0219887809003400
[9] Capozziello, S., De Laurentis, M.: arXiv:0910.2881v1 (2009b)
[10] Capozziello, S., Stornaiolo, C.: Int. J. Geom. Methods Mod. Phys. 5, 185 (2008) · Zbl 1157.83317 · doi:10.1142/S0219887808002709
[11] Chang, L.N., Macrae, K.I., Mansouri, F.: Phys. Rev. D 13, 235 (1976) · doi:10.1103/PhysRevD.13.235
[12] Chang, L.N., et al.: Phys. Rev. D 17, 3168 (1978) · doi:10.1103/PhysRevD.17.3168
[13] Cocconi, G., Salpeter, E.E.: Phys. Rev. Lett. 4, 176 (1960) · doi:10.1103/PhysRevLett.4.176
[14] Coleman, S., Wess, J., Zumino, B., et al.: Phys. Rev. 177, 2239 (1969) · doi:10.1103/PhysRev.177.2239
[15] Drake, S.: Galileo at Work. University of Chicago Press, Chicago (1978). ISBN 0-226-16226-5. http://en.wikipedia.org/wiki/Galileo
[16] Drever, R.W.P.: Phil. Mag. 6, 683 (1961) · doi:10.1080/14786436108244418
[17] Dubrovin, B.A., et al.: Contemporary Geometry. Nauka, Moscow (1986)
[18] Eubanks, T.M., Matsakis, D.N., Martin, J.O., Archinal, B.A., McCarthy, D.D., Klioner, S.A., Shapiro, S., Shapiro, I.I.: APS Meeting Abstracts pp. K1105+ (1997)
[19] Fock, V.A.: Z. Phys. 57, 261 (1929) · doi:10.1007/BF01339714
[20] Gell-Mann, M., Levi, M.: Nuovo Cimento 16, 705 (1960) · Zbl 0098.23205 · doi:10.1007/BF02859738
[21] Grignani, G., Nardelli, G.: Phys. Rev. D 45, 2719 (1992) · Zbl 1232.83070 · doi:10.1103/PhysRevD.45.2719
[22] Hehl, F.W., von der Heyde, P., Kerlick, G.D., Nester, J.M.: Rev. Mod. Phys. 48, 393 (1976) · Zbl 1371.83017 · doi:10.1103/RevModPhys.48.393
[23] Hehl, F.W., McCrea, J.D.: Found. Phys. 16, 267 (1986) · doi:10.1007/BF01889477
[24] Hughes, V.W., et al.: Phys. Rev. Lett. 4, 342 (1960) · doi:10.1103/PhysRevLett.4.342
[25] Iess, L., Giampieri, G., Anderson, J.D., Bertotti, B.: Class. Quantum. Gravity 16, 1487 (1999) · doi:10.1088/0264-9381/16/5/303
[26] Isham, C.J., Salam, A., Strathdee, J.: Ann. Phys. 62, 98 (1971) · Zbl 0209.58701 · doi:10.1016/0003-4916(71)90269-7
[27] Ivanov, E.A., Niederle, J.: Phys. Rev. D 25, 976, 988 (1982) · Zbl 1370.83094 · doi:10.1103/PhysRevD.25.976
[28] Ivanov, E.A., Ogievetsky, V.I.: Gauge theories as theories of spontaneous breakdown. Preprint of the Joint Institute of Nuclear Research, E2-9822, pp. 3–10 (1976)
[29] Ivanenko, D., Sardanashvily, G.A.: Phys. Rep. 94, 1 (1983) · doi:10.1016/0370-1573(83)90046-7
[30] Lebach, D.E., Corey, B.E., Shapiro, I.I., Ratner, M.I., Webber, J.C., Rogers, A.E.E., Davis, J.L., Herring, T.A.: Phys. Rev. Lett. 75, 1439 (1995) · doi:10.1103/PhysRevLett.75.1439
[31] Lord, E.A., Goswami, P.: J. Math. Phys. 29, 258 (1987) · Zbl 0642.53096 · doi:10.1063/1.528183
[32] Mansouri, F., Chang, L.N.: Phys. Rev. D 13, 3192 (1976) · doi:10.1103/PhysRevD.13.3192
[33] Mansouri, F.: Phys. Rev. Lett. 42, 1021 (1979) · doi:10.1103/PhysRevLett.42.1021
[34] Newton, I.: Philosophiae Naturalis Principia Mathematica (1687). http://plato.stanford.edu/entries/newton-principia/ · Zbl 0732.01044
[35] Nordtvedt, K.J., Will, C.M.: Astrophys. J. 177, 775 (1972) · doi:10.1086/151755
[36] Ogievetsky, V.I.: Lett. Nuovo Cimento 8, 988 (1973) · doi:10.1007/BF02891914
[37] Pontryagin, L.S.: Continous Groups. Nauka, Moscow (1984) · Zbl 0534.22001
[38] Reasenberg, R.D., Shapiro, I.I., MacNeil, P.E., et al.: Viking relativity experiment: verification of signal retardation by solar gravity. Astrophys. J. 234, L219 (1979) · doi:10.1086/183144
[39] Robertson, D.S., Carter, W.E.: Nature 310, 572 (1984) · doi:10.1038/310572a0
[40] Robertson, D.S., Carter, W.E., Dillinger, W.H.: Nature 349, 768 (1991) · doi:10.1038/349768a0
[41] Salam, A., Strathdee, J.: Phys. Rev. 184, 1750 (1969) 1760 · doi:10.1103/PhysRev.184.1750
[42] Stelle, K.S., et al.: Phys. Rev. D 21, 1466 (1980) · doi:10.1103/PhysRevD.21.1466
[43] Shapiro, I.I.: Phys. Rev. Lett. 13, 789–791 (1964) · doi:10.1103/PhysRevLett.13.789
[44] Shapiro, S.S., Davis, J.L., Lebach, D.E., Gregory, J.S.: Phys. Rev. Lett. 92, 121101 (2004) · doi:10.1103/PhysRevLett.92.121101
[45] Ter-Kazarian, G.: Astrophys. Space Sci. 241(2), 161 (1996) · Zbl 0883.53064 · doi:10.1007/BF00645224
[46] Ter-Kazarian, G.: Nuovo Cimento Sect. B 112(6), 825 (1997)
[47] Ter-Kazarian, G.: J. Phys. Soc. Jpn. Suppl. B 70, 84 (2001)
[48] Ter-Kazarian, G., Khachatryan, V., Yerknapetyan, K.: Proc. Int. C., The Universe Viewed in Gamma-rays, ICRR, University of Tokyo, Universal Academy Press, Inc., p. 354 (2003)
[49] Ter-Kazarian, G., et al.: Mont. Not. R. Astron. Soc 368, 461 (2006)
[50] Ter-Kazarian, G., Shidhani, S., Sargsyan, L.: Astrophys. Space Sci. 310, 93 (2007) · doi:10.1007/s10509-007-9482-z
[51] Tresguerres, R.: Phys. Rev. D 66, 064025 (2002) · doi:10.1103/PhysRevD.66.064025
[52] Turyshev, S.G.: Annu. Rev. Nucl. Part. Sci. 58, 207 (2008). arXiv:0806.1731 [gr-qc] · doi:10.1146/annurev.nucl.58.020807.111839
[53] Turyshev, S.G.: Usp. Fiz. Nauk 179, 3 (2009). arXiv:0809.3730 [gr-qc] · doi:10.3367/UFNr.0179.200901a.0003
[54] Weinberg, S.: Brandeis Lectures. Cambridge (1970)
[55] Weinberg, S.: Gravitation and Cosmology. Wiley, New York (1972) · Zbl 0256.05105
[56] Will, C.M., Nordtvedt, K.J.: Astrophys. J. 177, 757 (1972) · doi:10.1086/151754
[57] Will, C.M.: Astrophys. J. 185, 31 (1973) · doi:10.1086/152394
[58] Will, C.M.: Theory and experiment in gravitational physics. Cambridge University Press, Cambridge (1993) · Zbl 0785.53068
[59] Will, C.M.: Living Rev. Relativ. 9, 3 (2006). http://www.livingreviews.org/lrr-2006-3
[60] Williams, J.G., Anderson, J.D., Boggs, D.H., Lau, E.L., Dickey, J.O.: Bull. Am. Astron. Soc. 33, 836 (2001)
[61] Williams, J.G., Turyshev, S.G., Boggs, D.H.: In: Lämmerzahl, C., Everitt, C.W.F., Ruffini, R. (eds.) Testing the Equivalence Principle on Ground and in Space, Pescara, Italy, 2004. Springer, Berlin (2008). gr-qc/0507083
[62] Williams, J.G., Turyshev, S.G., Boggs, D.H.: Phys. Rev. Lett. 93, 261101 (2004a). gr-qc/0411113
[63] Williams, J.G., Newhall, X.X., Dickey, J.O.: Phys. Rev. D 53, 6730 (1996) · doi:10.1103/PhysRevD.53.6730
[64] Williams, J.G., Turyshev, S.G., Murphy, T.W.: Int. J. Mod. Phys. D 13, 567 (2004b). gr-qc/0311021 · Zbl 1049.83509 · doi:10.1142/S0218271804004682
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.