×

Gradient flow based Kohn-Sham density functional theory model. (English) Zbl 1459.37068

Summary: In this paper, we propose and analyze a gradient flow based model for electronic structure calculations. First, based on an extended gradient flow proposed in this paper, we propose a Kohn-Sham gradient flow based model. We prove that our gradient flow based model is orthogonality preserving, the extended gradient has an exponential decay over time \(t\), and the equilibrium point is a local minimizer of the Kohn-Sham energy functional. Then we propose a midpoint scheme to carry out the temporal discretization, which is proven to be orthogonality preserving, too. Based on the midpoint scheme, we design a practical orthogonality preserving iteration scheme which can deal with the propagation of the gradient flow based model and prove that the scheme produces approximations that converge to a local minimizer with some convergence rate under some reasonable assumptions. Finally, we report a number of numerical experiments that validate our theoretical results.

MSC:

37M05 Simulation of dynamical systems
37N40 Dynamical systems in optimization and economics
65N25 Numerical methods for eigenvalue problems for boundary value problems involving PDEs
70G60 Dynamical systems methods for problems in mechanics
81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] B. K. Antony, K. N. Joshipura, N. J. Mason, and J. Tennyson, R-matrix calculation of low-energy electron collisions with LiH, J. Phys. B: Atomic Molecular Opt. Phys., 37 (2004), pp. 1689-1697.
[2] W. Bao and Q. Du, Computing the ground state solution of Bose-Einstein condensates by a normalized gradient flow, SIAM J. Sci. Comput., 25 (2004), pp. 1674-1697, https://doi.org/10.1137/S1064827503422956. · Zbl 1061.82025
[3] C. Le Bris, Computational chemistry from the perspective of numerical analysis, Acta Numer., 14 (2005), pp. 363-444. · Zbl 1119.65390
[4] Y. Cai, L.-H. Zhang, Z. Bai, and R.-C. Li, On an eigenvector-dependent nonlinear eigenvalue problem, SIAM J. Matrix Anal. Appl., 39 (2018), pp. 1360-1382, https://doi.org/10.1137/17M115935X. · Zbl 1401.65036
[5] H. Chen, X. Dai, X. Gong, L. He, and A. Zhou, Adaptive finite element approximations for Kohn-Sham models, Multiscale Model. Simul., 12 (2014), pp. 1828-1869, https://doi.org/10.1137/130916096. · Zbl 1316.35260
[6] T. Chen, Y. Hua, and W. Yan, Global convergence of Oja’s subspace algorithm for principal component extraction, IEEE Trans. Neural Netw., 9 (1998), pp. 58-67.
[7] X. Dai, X. Gong, Z. Yang, D. Zhang, and A. Zhou, Finite volume discretizations for eigenvalue problems with applications to electronic structure calculations, Multiscale Model. Simul., 9 (2011), pp. 208-240, https://doi.org/10.1137/090757046. · Zbl 1233.65082
[8] X. Dai, Z. Liu, L. Zhang, and A. Zhou, A conjugate gradient method for electronic structure calculations, SIAM J. Sci. Comput., 39 (2017), pp. A2702-A2740, https://doi.org/10.1137/16M1072929. · Zbl 1378.65120
[9] X. Dai and A. Zhou, Three-scale finite element discretizations for quantum eigenvalue problems, SIAM J. Numer. Anal., 46 (2008), pp. 295-324, https://doi.org/10.1137/06067780X. · Zbl 1160.65060
[10] A. Edelman, T. A. Arias, and S. T. Smith, The geometry of algorithms with orthogonality constraints, SIAM J. Matrix Anal. Appl., 20 (1998), pp. 303-353, https://doi.org/10.1137/S0895479895290954. · Zbl 0928.65050
[11] S. Fournais, M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, and T. Ø. Sørensen, Positivity of the spherically averaged atomic one-electron density, Math. Z., 259 (2008), pp. 123-130. · Zbl 1138.81567
[12] J. B. Francisco, J. M. Mart\inez, and L. Mart\inez, Globally convergent trust-region methods for self-consistent field electronic structure calculations, J. Chem. Phys., 121 (2004), pp. 10863-10878.
[13] W. Hahn, Stability of Motion, Grundlehren Math. Wiss. 138, Springer, New York, 1967. · Zbl 0189.38503
[14] U. Helmke and J. B. Moore, Optimization and Dynamical Systems, Springer, Cham, 2012. · Zbl 0984.49001
[15] B. Jiang and Y. H. Dai, A framework of constraint preserving update schemes for optimization on Stiefel manifold, Math. Program., 153 (2015), pp. 535-575. · Zbl 1325.49037
[16] J. Kobus, D. Moncrieff, and S. Wilson, Comparison of the polarizabilities and hyperpolarizabilities obtained from finite basis set and finite difference Hartree-Fock calculations for diatomic molecules, J. Phys. B: Atomic, Molecular Opt. Phys., 34 (2001), pp. 5127-5143.
[17] X. Liu, X. Wang, Z. Wen, and Y. Yuan, On the convergence of the self-consistent field iteration in Kohn-Sham density functional theory, SIAM J. Matrix Anal. Appl., 35 (2014), pp. 546-558, https://doi.org/10.1137/130911032. · Zbl 1319.65041
[18] X. Liu, Z. Wen, X. Wang, M. Ulbrich, and Y. Yuan, On the analysis of the discretized Kohn-Sham density functional theory, SIAM J. Numer. Anal., 53 (2015), pp. 1758-1785, https://doi.org/10.1137/140957962. · Zbl 1317.15008
[19] R. Martin, Electronic Structure: Basic Theory and Practical Methods, Cambridge University Press, Cambridge, UK, 2004. · Zbl 1152.74303
[20] R. G. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules, Oxford University Press, New York, 1994.
[21] J. P. Perdew and A. Zunger, Self-interaction correction to density-functional approximations for many-electron systems, Phys. Rev. B, 23 (1981), pp. 5048-5079.
[22] PHG, http://lsec.cc.ac.cn.
[23] Y. Saad, J. R. Chelikowsky, and S. M. Shontz, Numerical methods for electronic structure calculations of materials, SIAM Rev., 52 (2010), pp. 3-54, https://doi.org/10.1137/060651653. · Zbl 1185.82004
[24] R. Schneider, T. Rohwedder, A. Neelov, and J. Blauert, Direct minimization for calculating invariant subspaces in density functional computations of the electronic structure, J. Comput. Math., 27 (2009), pp. 360-387. · Zbl 1212.81001
[25] L. Thøgersen, J. Olsen, D. Yeager, P. Jørgensen, P. Sałek, and T. Helgaker, The trust-region self-consistent field method: Towards a black-box optimization in Hartree-Fock and Kohn-Sham theories, J. Chem. Phys., 121 (2004), pp. 16-27.
[26] C. Udriste, Convex Functions and Optimization Methods on Riemannian Manifolds, Math. Appl. 297, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1994. · Zbl 0932.53003
[27] M. Ulbrich, Z. Wen, C. Yang, D. Klöckner, and Z. Lu, A proximal gradient method for ensemble density functional theory, SIAM J. Sci. Comput., 37 (2015), pp. A1975-A2002. · Zbl 1325.65095
[28] E. Vecharynski, C. Yang, and J. E. Pask, A projected preconditioned conjugate gradient algorithm for computing many extreme eigenpairs of a Hermitian matrix, J. Comput. Phys., 290 (2015), pp. 73-89. · Zbl 1349.65133
[29] Z. Wen and W. Yin, A feasible method for optimization with orthogonality constraints, Math. Program. 142 (2013), pp. 397-434. · Zbl 1281.49030
[30] W. Yan, U. Helmke, and J. B. Moore, Global analysis of Oja’s flow for neural networks, IEEE Trans. Neural Netw., 5 (1994), pp. 674-683.
[31] C. Yang, W. Gao, and J. C. Meza, On the convergence of the self-consistent field iteration for a class of nonlinear eigenvalue problems, SIAM J. Matrix Anal. Appl., 30 (2009), pp. 1773-1788, https://doi.org/10.1137/080716293. · Zbl 1228.65081
[32] C. Yang, J. C. Meza, and L.-W. Wang, A trust region direct constrained minimization algorithm for the Kohn-Sham equation, SIAM J. Sci. Comput., 29 (2007), pp. 1854-1875, https://doi.org/10.1137/060661442. · Zbl 1154.65340
[33] X. Zhang, J. Zhu, Z. Wen, and A. Zhou, Gradient type optimization methods for electronic structure calculations, SIAM J. Sci. Comput., 36 (2014), pp. C265-C289, https://doi.org/10.1137/130932934. · Zbl 1300.82006
[34] Z. Zhao, Z.-J. Bai, and X.-Q. Jin, A Riemannian Newton algorithm for nonlinear eigenvalue problems, SIAM J. Matrix Anal. Appl., 36 (2015), pp. 752-774, https://doi.org/10.1137/140967994. · Zbl 1317.65122
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.