×

Some solutions of generalised variable coefficients KdV equation by classical Lie approach. (English) Zbl 1371.35251

Cushing, Jim M. (ed.) et al., Applied analysis in biological and physical sciences. ICMBAA, Aligarh, India, June 4–6, 2015. New Delhi: Springer (ISBN 978-81-322-3638-2/hbk; 978-81-322-3640-5/ebook). Springer Proceedings in Mathematics & Statistics 186, 309-319 (2016).
Summary: We investigate the symmetries of the generalised KdV Equation by using the theory of Lie classical method. The similarities obtained are utilized to reduce the order of nonlinear partial differential equation. Some solutions of reduced differential equation are presented.
For the entire collection see [Zbl 1361.92003].

MSC:

35Q53 KdV equations (Korteweg-de Vries equations)
35B07 Axially symmetric solutions to PDEs
35C05 Solutions to PDEs in closed form

Software:

ATFM
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Hong, H., Lee, H.: Korteweg-de Vries equation of ion acoustic surface waves. Phys. Plasmas 6, 3422–3424 (1999) · doi:10.1063/1.873599
[2] Satsuma, J., Kaup, D.J.: A B \[ \ddot{a} \] a ” cklund transformation for a higher order Korteweg-de Vries equation. J. Phys. Soc. Jpn. 43, 692–726 (1977) · Zbl 1334.81041 · doi:10.1143/JPSJ.43.692
[3] Zhang, S.: Application of exp-function method to a KdV equation with variable coefficients. Phys. Lett. A 365, 448–453 (2007) · Zbl 1203.35255 · doi:10.1016/j.physleta.2007.02.004
[4] Singh, K., Gupta, R.K.: On symmetries and invariant solutions of a coupled KdV system with variable coefficients. Int. J. Math. Math. Sci. 23, 3711–3725 (2005) · Zbl 1092.35523 · doi:10.1155/IJMMS.2005.3711
[5] Gupta, R.K., Singh, K.: Symmetry analysis and some exact solutions of cylindrically symmetric null fields in general relativity. Commun. Nonlinear Sci. Numer. Simul. 16, 4189–4196 (2011) · Zbl 1223.83019 · doi:10.1016/j.cnsns.2011.03.006
[6] Abd-el-Malek, M.B., Helal, M.M.: Group method solutions of the generalized forms of Burgers, Burgers-KdV and KdV equations with time-dependent variable coefficients. Acta Mech. 221, 281–296 (2011) · Zbl 1234.35214 · doi:10.1007/s00707-011-0503-1
[7] Yan, Z.: A new auto-B \[ \ddot{a} \] a ” cklund transformation and its applications in finding explicit exact solutions for the general KdV equation. Chin. J. Phys. 40, 113–120 (2002)
[8] Lie, S.: Vorlesungen uber. Differentialgliechurger mit Bekannten Infinite-simalen Transformationen, Teuber, Leipzig (1891)
[9] Lie, S.: On integration of a class of linear partial differential equations by means of definite integrals. Arch. Math. 6, 328–368 (1881) · JFM 13.0298.01
[10] Olver, P.J.: Applications of Lie Groups to Differential Equations. Springer, New York (1993) · Zbl 0785.58003 · doi:10.1007/978-1-4612-4350-2
[11] Arrigo, D.J., Beckham, J.R.: Nonclassical symmetries of evolutionary partial differential equations and compatibility. J. Math. Anal. Appl. 289, 55–65 (2004) · Zbl 1037.35066 · doi:10.1016/j.jmaa.2003.08.015
[12] Kudryashov, N.A.: Simplest equation method to look for exact solutions of nonlinear differential equations. Chaos Solitons Fractals 24, 1217–1231 (2005) · Zbl 1069.35018 · doi:10.1016/j.chaos.2004.09.109
[13] Wang, M.L., Zhang, J.L., Li, X.Z.: The \[ \frac{G^{\prime }}{G} \] G ’ G -expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics. Phys. Lett. A 372, 417–423 (2008) · Zbl 1217.76023 · doi:10.1016/j.physleta.2007.07.051
[14] Bansal, A., Gupta, R.K.: Modified \[ \frac{G^{\prime }}{G} \] G ’ G -expansion method for finding exact wave solutions of the coupled KleinG-ordon-Schr \[ \ddot{o} \] o ” dinger equation. Math. Methods Appl. Sci. 35, 1175–1187 (2012) · Zbl 1250.35012 · doi:10.1002/mma.2506
[15] Gupta, R.K., Bansal, A.: Similarity reductions and exact solutions of generalized Bretherton equation with time-dependent coefficients. Nonlinear Dyn. 71, 1–12 (2013) · Zbl 1268.35007 · doi:10.1007/s11071-012-0637-2
[16] Bluman, G.W., Anco, S.C.: Symmetries and Differential Equations. Springer, New York (1989) · Zbl 0882.35007
[17] Bluman, G.W., Kumei, S.: Symmetries and Differential Equations. Applied Mathematical Sciences, vol. 81. Springer, Berlin (1989) · Zbl 0698.35001 · doi:10.1007/978-1-4757-4307-4
[18] Bruz \[ \acute{o} \] o ’ n, M.S., Gandarias, M.L., Camacho, J.C.: Classical and nonclassical symmetries for a Kuramoto Sivashinsky equation with dispersive effects. Math. Methods Appl. Sci. 30, 2091–2100 (2007) · Zbl 1142.35075 · doi:10.1002/mma.907
[19] Gandarias, M.L., Bruz \[ \acute{o} \] o ’ n, M.S.: Solutions through nonclassical potential symmetries for a generalized inhomogeneous nonlinear diffusion equation. Math. Methods Appl. Sci. 31, 753–767 (2008) · Zbl 1133.76049 · doi:10.1002/mma.937
[20] Kudryashov, N.A., Loguinova, N.B.: Extended simplest equation method for nonlinear differential equations. Appl. Math. Comput. 205, 396–402 (2008) · Zbl 1168.34003
[21] Molati, M., Ramollo, M.P.: Symmetry classification of the Gardner equation with time-dependent coefficients arising in stratified fluids. Commun. Nonlinear Sci. Numer. Simul. 17, 1542–1548 (2012) · Zbl 1245.35110 · doi:10.1016/j.cnsns.2011.09.002
[22] Wazwaz, A.M., Triki, H.: Soliton solutions for a generalized KdV and BBM equations with time-dependent coefficients. Commun. Nonlinear Sci. Numer. Simul. 16, 1122–1126 (2011) · Zbl 1221.35375 · doi:10.1016/j.cnsns.2010.06.024
[23] Li, W., Zhao, Y.-M.: Exact solutions for a generalized KdV equation with time-dependent coefficients and K(m, n) equation. Appl. Math. Sci. 6, 2203–2217 (2012) · Zbl 1286.35217
[24] Wazwaz, A.M.: The tanh method for compact and non compact solutions for variants of the KdV-Burger equations. Phys. D: Nonlinear Phenom. 213, 147–151 (2006) · Zbl 1091.35535 · doi:10.1016/j.physd.2005.09.018
[25] Parkes, E.J., Duffy, B.R.: An automated tanh-function method for finding solitary wave solutions to nonlinear evolution equations. Comput. Phys. Commun. 98, 288–300 (1996) · Zbl 0948.76595 · doi:10.1016/0010-4655(96)00104-X
[26] El-Wakil, S.A., Abdou, M.A.: New exact travelling wave solutions using modified extended tanh-function method. Chaos Solitons Fractals 31, 840–852 (2007) · Zbl 1139.35388 · doi:10.1016/j.chaos.2005.10.032
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.