×

A survey on Lyapunov-based methods for stability of linear time-delay systems. (English) Zbl 1405.34046

Summary: Recently, stability analysis of time-delay systems has received much attention. Rich results have been obtained on this topic using various approaches and techniques. Most of those results are based on Lyapunov stability theories. The purpose of this article is to give a broad overview of stability of linear time-delay systems with emphasis on the more recent progress. Methods and techniques for the choice of an appropriate Lyapunov functional and the estimation of the derivative of the Lyapunov functional are reported in this article, and special attention is paid to reduce the conservatism of stability conditions using as few as possible decision variables. Several future research directions on this topic are also discussed.

MSC:

34D20 Stability of solutions to ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Liu G P, Rees D, Chai S C, Nie X Y. Design, simulation and implementation of networked predictive control systems. Measurement & Control, 2005, 38: 17-21 · doi:10.1177/002029400503800102
[2] Liu G P, Mu J, Rees D. Design and stability analysis of networked control systems with random communication time delay using the modified MPC. International Journal of Control, 2006, 79: 288-297 · Zbl 1140.93394 · doi:10.1080/00207170500533288
[3] Liu G P, Xia Y, Rees D, Hu W S. Design and stability criteria of networked predictive control systems with random network delay in the feedback channel. IEEE Transactions on Systems, Man and Cybernetics-Part C, 2007, 37(2): 173-184 · doi:10.1109/TSMCC.2006.886987
[4] Sun J, Chen J, Gan MG. A necessary and sufficient stability criterion for networked predictive control systems. Science China Technological Sciences, 2016, 59(1): 2-8 · doi:10.1007/s11431-015-5973-2
[5] Li M, Sun J, Dou L, Stability of an improved dynamic quantized system with time-varying delay and packet losses. IET Control Theory & Applications, 2015, 9(6): 988-995 · doi:10.1049/iet-cta.2013.1052
[6] Sun J, Chen J. Networked predictive control for systems with unknown or partially known delay. IET Control Theory & Applications, 2014, 8(18): 2282-2288 · doi:10.1049/iet-cta.2014.0210
[7] Michiels W, Niculescu S-I, Moreau L. Using delays and time-varying gains to improve the static output feedback stabilizability of linear systems: a comparison. IMA Journal of Mathematical Control and Information, 2004, 21(4): 393-418 · Zbl 1083.93047 · doi:10.1093/imamci/21.4.393
[8] Salarieh H, Alasty A. Delayed feedback control of chaotic spinning disk via minimum entropy approach. Nonlinear Analysis: Theory, Methods and Applications, 2008, 69(10): 3273-3280 · Zbl 1148.93022 · doi:10.1016/j.na.2007.09.016
[9] Zhang B L, Huang Z W, Hang Q L. Delayed non-fragile H∞ control for offshore steel jacket platforms. Journal of Vibration and Control, 2015, 21(5): 959-974 · Zbl 1358.93074 · doi:10.1177/1077546313488159
[10] El’sgol’ts, L. E.; Norkin, S. B., Introduction to the theory and applications of differential equations with deviating arguments (1973), New York · Zbl 0287.34073
[11] Kolmanovskii, V. B.; Nosov, V. R., Stability of functional differential equations (1986), New York · Zbl 0593.34070
[12] Kolmanovskii V B, Myshkis A. Applied Theory of Functional Differential Equations. Boston: Kluwer Academic Publishers, 1992 · Zbl 0917.34001 · doi:10.1007/978-94-015-8084-7
[13] Dugard L, Verriest E I. Stability and Control of Time-delay Systems, London: Springer-Verlag, 1998 · Zbl 0901.00019 · doi:10.1007/BFb0027478
[14] Kolmanovskii V, Myshkis A. Applied theory of functional differential equations. Dordrecht: Kluwer, 1999 · Zbl 0917.34001
[15] Niculescu SI. Delay Effects on Stability: A Robust Control Approach (Lecture Notes in Control and Information Sciences). London: Springer-Verlag, 2001
[16] Boukas E K, Liu Z K. Deterministic and Stochastic Time Delay Systems. Boston: Birkhäuser, 2002. · Zbl 1056.93001 · doi:10.1007/978-1-4612-0077-2
[17] Chiasson J, Loiseau J J. Applications of Time Delay Systems (Lecture Notes in Control and Information Sciences). London: Springer-Verlag, 2007 · Zbl 1110.93003
[18] Fridman E. New Lyapunov-Krasovskii functionals for stability of linear retarded and neutral type systems. System & Control Letters, 2001, 43: 309-319 · Zbl 0974.93028 · doi:10.1016/S0167-6911(01)00114-1
[19] Fridman E, Shaked U. An improved stabilization method for linear systems with time-delay. IEEE Transactions on Automatic Control, 2002, 47(11): 1931-1937 · Zbl 1364.93564 · doi:10.1109/TAC.2002.804462
[20] Fridman E, Orlov Y. Exponential stability of linear distributed parameter systems with time-varying delays. Automatica, 2009, 45(2): 194-201 · Zbl 1154.93404 · doi:10.1016/j.automatica.2008.06.006
[21] Fridman E, Shaked U, Liu K. New conditions for delay-derivativedependent stability. Automatica, 2009, 45(11): 2723-2727 · Zbl 1180.93080 · doi:10.1016/j.automatica.2009.08.002
[22] Liu K, Fridman E. Wirtinger’s inequality and Lyapunov-based sampled-data stabilization. Automatica, 2012, 48(1): 102-108 · Zbl 1244.93094 · doi:10.1016/j.automatica.2011.09.029
[23] Han Q L. Robust stability of uncertain delay-differential systems of neutral type. Automatica, 2002, 38(4): 719-723 · Zbl 1020.93016 · doi:10.1016/S0005-1098(01)00250-3
[24] Han Q L. On robust stability of neutral systems with time-varying discrete delay and norm-bounded uncertainty. Automatica, 2004, 40(6): 1087-1092 · Zbl 1073.93043 · doi:10.1016/j.automatica.2004.01.007
[25] Jiang X, Han Q L. On H∞ control for linear systems with interval time-varying delay. Automatica, 2005, 41(12): 2099-2106 · Zbl 1100.93017 · doi:10.1016/j.automatica.2005.06.012
[26] Jiang X, Han Q L. Delay-dependent robust stability for uncertain linear systems with interval time-varying delay. Automatica, 2006, 42(6): 1059-1065 · Zbl 1135.93024 · doi:10.1016/j.automatica.2006.02.019
[27] Gao H J, Wang C H. Comments and further results on “A descriptor system approach to <Emphasis Type=”Italic“>H∞ control of linear time-delay systems”. IEEE Transactions on Automatic Control, 2003, 48(3): 520-525 · Zbl 1364.93211 · doi:10.1109/TAC.2003.809154
[28] Gao H J, Wang C H. A delay-dependent approach to robust H∞ filtering for uncertain discrete-time state-delayed systems. IEEE Transactions on Signal Processing, 2004, 52(6): 1631-1640 · Zbl 1369.93175 · doi:10.1109/TSP.2004.827188
[29] Gao H J, Meng X Y, Chen T W. Stabilization of networked control systems with a new delay characterization. IEEE Transactions on Automatic Control, 2008, 53(9): 2142-2148 · Zbl 1367.93696 · doi:10.1109/TAC.2008.930190
[30] Lam J, Gao H J, Wang C H. Stability analysis for continuous systems with two additive time-varying delay components. Systems & Control Letters, 2007, 56(1): 16-24 · Zbl 1120.93362 · doi:10.1016/j.sysconle.2006.07.005
[31] Yue D, Han Q L, Peng C. State feedback controller design of networked control systems. IEEE Transactions on Circuits and Systems—II: Express Briefs, 2004, 41: 640-644 · doi:10.1109/TCSII.2004.836043
[32] Yue D, Han Q L, Lam J. Network-based robust H∞ control of systems with uncertainty. Automatica, 2005, 41(6): 999-1007 · Zbl 1091.93007 · doi:10.1016/j.automatica.2004.12.011
[33] Xu S Y, Lam J. Improved delay-dependent stability criteria for timedelay systems. IEEE Transactions on Automatic Control, 2005, 50(3): 384-387 · Zbl 1365.93376 · doi:10.1109/TAC.2005.843873
[34] Xu S Y, Lam J, Zou Y. Further results on delay-dependent robust stability conditions of uncertain neutral systems. International Journal of Robust and Nonlinear Control, 2005, 15(5): 233-246 · Zbl 1078.93055 · doi:10.1002/rnc.983
[35] Li X, De Souza C E. Delay-dependent robust stability and stabilisation of uncertain linear delay systems: a linear matrix inequality approach. IEEE Transactions on Automatic Control, 1997, 42(8): 1144-1148 · Zbl 0889.93050 · doi:10.1109/9.618244
[36] Shao H Y. Improved delay-dependent stability criteria for systems with a delay varying in a range. Automatica, 2008, 44(12): 3215-3218 · Zbl 1153.93476 · doi:10.1016/j.automatica.2008.09.003
[37] Shao H Y. New delay-dependent stability criteria for systems with interval delay. Automatica, 2009, 45(3): 744-749 · Zbl 1168.93387 · doi:10.1016/j.automatica.2008.09.010
[38] Chen W H, Zheng W X. Delay-dependent robust stabilization for uncertain neutral systems with distributed delays. Automatica, 2007, 43(1): 95-104 · Zbl 1140.93466 · doi:10.1016/j.automatica.2006.07.019
[39] Mahmoud M S. Resilient L2 − L∞ filtering of polytopic systems with state delays. IET Control Theory & Applications, 2007, 1(1): 141-154 · doi:10.1049/iet-cta:20045281
[40] Zhang XM, Han Q L. Abel lemma-based finite-sum inequality and its application to stability analysis for linear discrete time-delay systems. Automatica, 2015, 57: 199-202 · Zbl 1330.93213 · doi:10.1016/j.automatica.2015.04.019
[41] Liu K, Fridman E, Johansson K H, Xia Y. Generalized Jensen inequalities with application to stability analysis of systems with distributed delays over infinite time-horizons. Automatica, 2016, 69: 222-231 · Zbl 1338.93391 · doi:10.1016/j.automatica.2016.02.038
[42] Chen Y G, Fei S M, Gu Z, Li Y M. New mixed-delay-dependent robust stability conditions for uncertain linear neutral systems. IET Control Theory Applications, 2014, 8(8): 606-613 · doi:10.1049/iet-cta.2013.0569
[43] Zhang B Y, Lam J, Xu S Y. Stability analysis of distributed delay neural networks based on relaxed Lyapunov-Krasovskii functionals. IEEE Transactions on Neural Networks and Learning Systems, 2015, 26(7): 1480-1492 · doi:10.1109/TNNLS.2014.2347290
[44] Peng D, Hua C C. Improved approach to delay-dependent stability and stabilisation of two-dimensional discrete-time systems with interval time-varying delays. IET Control Theory Applications, 2015, 9(12): 1839-1845 · doi:10.1049/iet-cta.2014.0886
[45] Li J, Chen Z H, Cai D S, Zhen W, Huang Q. Delay-Dependent stability control for power system with multiple time-delays. IEEE Transactions on Power Systems, 2016, 31(3): 2316-2326 · doi:10.1109/TPWRS.2015.2456037
[46] Ding L, He Y, Wu M, Ning C. Improved mixed-delay-dependent asymptotic stability criteria for neutral systems. IET Control Theory Applications, 2015, 9(14): 2180-2187 · doi:10.1049/iet-cta.2015.0022
[47] Zhang, C. K.; He, Y.; Jiang, L.; Wu, M.; Zeng, H. B., Delay-variationdependent stability of delayed discrete-time systems (2015)
[48] Boyd S, Ghaoui L E, Feron E, Balakrishnan V. Linear Matrix Inequality in Systems and Control Theory (SIAM Studies in Applied Mathematics). Philadelphia, PA: SIAM, 1994 · Zbl 0816.93004 · doi:10.1137/1.9781611970777
[49] Hale J K, Lunel S M V. Introduction to functional differential equations. New York: Springer, 1993 · Zbl 0787.34002 · doi:10.1007/978-1-4612-4342-7
[50] Gu K, Kharitonov V L, Chen J. Stability of Time-delay Systems, Boston: Brikhäuser, 2003 · Zbl 1039.34067 · doi:10.1007/978-1-4612-0039-0
[51] Fridman E. Introduction to Time-delay Systems: Analysis and Control (Systems and Control: Foundations and Applications). Springer, 2014 · Zbl 1303.93005
[52] Wu M, He Y, She J H, Liu G P. New delay-dependent stability criteria for robust stability of time-varying delay systems. Automatica, 2004; 40(8): 1435-1439 · Zbl 1059.93108 · doi:10.1016/j.automatica.2004.03.004
[53] He Y, Wang Q G, Lin C, Wu M. Augmented Lyapunov functional and delay-dependent stability criteria for neutral systems. International Journal of Robust and Nonlinear Control, 2005, 15(18): 923-933 · Zbl 1124.34049 · doi:10.1002/rnc.1039
[54] He Y, Wang Q G, Xie L, Lin C. Further improvement of freeweighting matrices technique for systems with time-varying delay. IEEE Transactions on Automatic Control, 2007, 52(2): 293-299 · Zbl 1366.34097 · doi:10.1109/TAC.2006.887907
[55] Sun J, Liu G P, Chen J. Delay-dependent stability and stabilization of neutral time-delay systems. International Journal of Robust and Nonlinear Control, 2009, 19(12): 1364-1375 · Zbl 1169.93399 · doi:10.1002/rnc.1384
[56] Sun J, Liu G P. On improved delay-dependent stability criteria for neutral time-delay systems. European Journal of Control, 2009, 15(6): 613-623 · Zbl 1215.34091 · doi:10.3166/ejc.15.613-623
[57] Sun J, Chen J, Liu G P, Rees D. Delay-dependent robust H∞ filter design for uncertain linear systems with time-varying delay. Circuits, Systems, and Signal Processing, 2009, 28(5): 763-775 · Zbl 1173.93331 · doi:10.1007/s00034-009-9120-9
[58] Sun J, Liu G P, Chen J, Rees D. Improved stability criteria for neural networks with time-varying delay. Physics Letters A, 2009, 373(3): 342-348 · Zbl 1227.92003 · doi:10.1016/j.physleta.2008.11.048
[59] Sun J, Liu G P. A new delay-dependent stability criterion for timedelay systems. Asian Journal of Control, 2009, 11(4): 427-431 · doi:10.1002/asjc.121
[60] Sun, J.; Chen, J.; Liu, G. P.; Rees, D., Delay-range-dependent and raterange- dependent stability criteria for linear systems with time-varying delays, 251-256 (2009)
[61] Sun, J.; Chen, J.; Liu, G. P.; Rees, D., On robust stability of uncertain neutral systems with discrete and distributed delays, 5469-5473 (2009)
[62] Sun J, Liu G P, Chen J, Rees D. Improved delay-range-dependent stability criteria for linear systems with time-varying delays. Automatica, 2010, 46(2): 466-470 · Zbl 1205.93139 · doi:10.1016/j.automatica.2009.11.002
[63] Sun J, Liu G P, Chen J, Rees D. Improved stability criteria for linear systems with time-varying delay. IET Control Theory & Applications, 2010, 4(4): 683-689 · doi:10.1049/iet-cta.2008.0508
[64] Chen J, Sun J, Liu G P, Rees D. New delay-dependent stability criteria for neural networks with time-varying interval delay. Physics Letters A, 2010, 374(43): 4397-4405 · Zbl 1238.82027 · doi:10.1016/j.physleta.2010.08.070
[65] Qian W, Cong S, Li T, Fei S M. Improved stability conditions for systems with interval time-varying delay. International Journal of Control, Automation, and Systems, 2012, 10(6): 1146-1152 · doi:10.1007/s12555-012-0609-9
[66] Lee, WI; Jeong, C.; Park, P. G., Further improvement of delay-dependent stability criteria for linear systems with time-varying delays, 1300-1304 (2012)
[67] Liu J, Hou ZW. New stability analysis for systems with interval timevarying delay based on Lyapunov functional method. Journal of Information & Computational Science, 2014, 11(6): 1843-1851 · doi:10.12733/jics20103176
[68] He Y, Wang Q G, Lin C, Wu M. Delay-dependent stability for systems with time-varying delay. Automatica, 2007, 43(2): 371-376 · Zbl 1111.93073 · doi:10.1016/j.automatica.2006.08.015
[69] Sun J, Han Q L, Chen J, Liu G P. Less conservative stability criteria for linear systems with interval time-varying delays. International Journal of Robust and Nonlinear Control, 2015, 25(40): 475-485 · Zbl 1312.93076 · doi:10.1002/rnc.3096
[70] Sun J, Chen J. Stability analysis of static recurrent neural networks with interval time-varying delay. Applied Mathematics and Computation, 2013, 221(15): 111-120 · Zbl 1329.93119 · doi:10.1016/j.amc.2013.06.028
[71] Qian W, Liu J, Fei SM. New augmented Lyapunov functional method for stability of uncertain neutral systems with equivalent delays. Mathematics and Computers in Simulation, 2012, 84: 42-50 · Zbl 1258.93085 · doi:10.1016/j.matcom.2012.08.003
[72] Gu K. Discretized LMI set in the stability problem of linear uncertain time-delay systems. International Journal of Control, 1997, 68(4): 923-934 · Zbl 0986.93061 · doi:10.1080/002071797223406
[73] Gu K, Han Q L, Luo A C J, Niculescu S I. Discretized Lyapunov functional for systems with distributed delay and piecewise constant coefficients. International Journal of Control, 2001, 74(7): 737-744 · Zbl 1015.34061 · doi:10.1080/00207170010031486
[74] Gu K. An improved stability criterion for systems with distributed delays. International Journal of Robust and Nonlinear Control, 2003, 13(9): 819-831 · Zbl 1039.93031 · doi:10.1002/rnc.847
[75] Kharitonov V L, Niculescu S I. On the stability of linear systems with uncertain delay. IEEE Transactoins on Automatic Control, 2003, 48(1): 127-132 · Zbl 1364.34102 · doi:10.1109/TAC.2002.806665
[76] Kharitonov V L, Zhabko A P. Lyapunov-Krasovskii approach to the robust stability analysis of time-delay systems. Automatica, 2003, 39(1): 15-20 · Zbl 1014.93031 · doi:10.1016/S0005-1098(02)00195-4
[77] Fridman E, Niculescu S I. On complete Lyapunov-Krasovskii functional techniques for uncertain systems with fast-varying delays. International Journal of Robust Nonlinear Control, 2008, 18(3): 364-374 · Zbl 1284.93206 · doi:10.1002/rnc.1230
[78] He Y, Liu G P, Rees D. New delay-dependent stability criteria for neural networks with time-varying delay. IEEE Transactions on Neural Network, 2007, 18(1): 310-314 · doi:10.1109/TNN.2006.888373
[79] He Y, Wu M, Liu G P, She J H. Output feedback stabilization for a discrete-time systems with a time-varying delay. IEEE Transactions on Automatic Control, 2008, 53(10): 2372-2377 · Zbl 1367.93507 · doi:10.1109/TAC.2008.2007522
[80] Fridman E, Shaked U. Delay-dependent stability and H∞ control: constant and time-varying delays. International Journal of Control, 2003, 76(1): 48-60 · Zbl 1023.93032 · doi:10.1080/0020717021000049151
[81] Park P. A delay-dependent stability criterion for systems with uncertain time-invariant delays. IEEE Transactions on Automatic Control, 1999, 44(4): 876-877 · Zbl 0957.34069 · doi:10.1109/9.754838
[82] Moon Y S, Park P, Kwon W H, Lee Y S. Delay-dependent robust stabilization of uncertain state-delayed systems. International Journal of Control, 2001, 74(14): 1447-1455 · Zbl 1023.93055 · doi:10.1080/00207170110067116
[83] WuM, He Y, She J H. Stability Analyssi and Robust Control of Timedelay Systems. London: Springer, 2010.
[84] Xu S, Lam J. A survey of linear matrix inequality techniques in stability analysis of delay systems. International Journal of Systems Science, 2008, 39(12): 1095-1113 · Zbl 1156.93382 · doi:10.1080/00207720802300370
[85] He Y, Wu M, She J H, Liu G P. Parameter-dependent Lyapunov for stability of time-delay systems with polytopic-type uncertainties. IEEE Transactions on Automatic Control, 2004, 49(5): 828-832 · Zbl 1365.93368 · doi:10.1109/TAC.2004.828317
[86] He Y,Wu M, She J H. An improved H∞ filter design for systems with time-varying interval delay. IEEE Transactions on Signal Processing, 2006, 53(11): 1235-1239
[87] He Y, Wu M, She J H. An improved global asymptotic stability criterion for delayed cellular neural networks. IEEE Transactions on Neural Network, 2006, 17(1): 250-252 · doi:10.1109/TNN.2005.860874
[88] He Y, Wu M, She J H. Delay-dependent exponential stability of delayed neural networks with time-varying delay. IEEE Transactions on Circuits and Systems—II: Express Briefs, 2006, 53(7): 553-557 · doi:10.1109/TCSII.2006.876385
[89] Wu M, He Y, She J H. New delay-dependent stability criteria and stabilising method for neutral systems. IEEE Transactions on Automatic Control, 2004, 49(12): 2266-2271 · Zbl 1365.93358 · doi:10.1109/TAC.2004.838484
[90] Zhang X M, Wu M, She J H, He Y. Delay-dependent stabilization of linear systems with time-varying state and input delays. Automatica, 2005, 41(8): 1405-1412 · Zbl 1093.93024 · doi:10.1016/j.automatica.2005.03.009
[91] Zeng H B, He Y, Wu M, She J H. Free-matrix-based integral inequality for stability analysis of systems with time-varying delay. IEEE Transactions on Automatic Control, 2015, 60(10): 2768-2772 · Zbl 1360.34149 · doi:10.1109/TAC.2015.2404271
[92] Gu, K., An integral inequality in the stability problem of time-delay systems, 2805-2810 (2000)
[93] Gahinet P, Apkarian P. A linear matrix inequality approach to H∞ control. International Journal of Robust and Nonlinear Control, 1994, 4(4): 421-448 · Zbl 0808.93024 · doi:10.1002/rnc.4590040403
[94] Gouaisbaut, F.; Peaucelle, D., A note on stability of time delay systems (2006)
[95] Gouaisbaut, F.; Peaucelle, D., Delay-dependent robust stability of time delay systems (2006)
[96] Suplin V, Fridman E, Shaked U. H∞ control of linear uncertain timedelay systems-a projection approach. IEEE Transactions on Automatic Control, 2006, 51(4): 680-685 · Zbl 1366.93163 · doi:10.1109/TAC.2006.872767
[97] Zhang X M, Han Q L. Novel delay-derivative-dependent stability criteria using new bounding techniques. International Journal of Robust and Nonlinear Control, 2013, 23(13): 1419-1432 · Zbl 1278.93230 · doi:10.1002/rnc.2829
[98] Briat C. Convergence and equivalence results for the Jensen’s inequality—application to time-delay and sampled-data systems. IEEE Transactions on Automatic Control, 2011, 56(7): 1660-1665 · Zbl 1368.26020 · doi:10.1109/TAC.2011.2121410
[99] Seuret A, Gouaisbaut F. Wirtinger-based integral inequality: application to time-delay systems. Automatica, 2013, 49(9): 2860-2866 · Zbl 1364.93740 · doi:10.1016/j.automatica.2013.05.030
[100] Seuret, A.; Gouaisbaut, F.; Fridman, E., Stability of systems with fastvarying delay using improved wirtinger’s inequality, 946-951 (2013) · doi:10.1109/CDC.2013.6760004
[101] Ji X F, Su H Y. A note on equivalence between two integral inequalities for time-delay systems. Automatica, 2015, 53: 244-246 · Zbl 1371.93178 · doi:10.1016/j.automatica.2014.12.030
[102] Gyurkovics E. A note onWirtinger-type integral inequalities for timedelay systems. Automatica, 2015, 61: 44-46 · Zbl 1327.93169 · doi:10.1016/j.automatica.2015.07.033
[103] Park M, Kwon O, Park JH, Lee S, Cha E. Stability of time-delay systems via Wirtinger-based double integral inequality. Automatica, 2015, 55: 204-208 · Zbl 1377.93123 · doi:10.1016/j.automatica.2015.03.010
[104] Hien L V, Trinh H. Refined Jensen-based inequality approach to stability analysis of time-delay systems. IET Control Theory & Applications, 2015, 9(14): 2188-2194 · doi:10.1049/iet-cta.2014.0962
[105] Park P G, Lee W, Lee S Y. Auxiliary function-based integral inequalities for quadratic functions and their applications to time-delay systems. Journal of the Franklin Institute, 2015, 352(4): 1378-1396 · Zbl 1395.93450 · doi:10.1016/j.jfranklin.2015.01.004
[106] Kim J H. Further improvement of Jensen inequality and application to stability of time-delayed systems. Automatica, 2016, 61: 121-125 · Zbl 1329.93123 · doi:10.1016/j.automatica.2015.08.025
[107] Park P, Ko J W. Stability and robust stability for systems with a timevarying delay. Automatica, 2007, 43(10): 1855-1858 · Zbl 1120.93043 · doi:10.1016/j.automatica.2007.02.022
[108] Kim J H. Note on stability of linear systems with time-varying delay. Automatica, 2011, 47(9): 2118-2121 · Zbl 1227.93089 · doi:10.1016/j.automatica.2011.05.023
[109] Park P, Ko JW, Jeong C. Reciprocally convex approach to stability of systems with time-varying delays. Automatica, 2011, 47(1): 235-238 · Zbl 1209.93076 · doi:10.1016/j.automatica.2010.10.014
[110] Lee WI, Park P. Second-order reciprocally convex approach to stability of systems with interval time-varying delays. Applied Mathematics and Computation, 2014, 229: 245-253 · Zbl 1364.34103 · doi:10.1016/j.amc.2013.12.025
[111] Zhu X L, Wang Y, Yang G H. New stability criteria for continuoustime systems with interval time-varying delay. IET Control Theory & Applications, 2010, 4(6): 1101-1107 · doi:10.1049/iet-cta.2009.0176
[112] Tang M, Wang Y W, Wen C. Improved delay-range-dependent stability criteria for linear systems with interval time-varying delays. IET Control Theory & Applications, 2012, 6(6): 868-873 · doi:10.1049/iet-cta.2011.0360
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.