×

Preconditioners for two-phase incompressible Navier-Stokes flow. (English) Zbl 1421.76161

Summary: We consider iterative methods for solving the linearized Navier-Stokes equations arising from two-phase flow problems and the efficient preconditioning of such systems when using mixed finite element methods. Our target application is simulation within the Proteus toolkit; in particular, we will give results for a dynamic dam-break problem in two dimensions. We focus on a preconditioner motivated by approximate commutators which has proved effective, displaying mesh-independent convergence for the constant coefficient single-phase Navier-Stokes equations. This approach is known as the “pressure convection-diffusion” (PCD) preconditioner [H. C. Elman et al., Finite elements and fast iterative solvers. With applications in incompressible fluid dynamics. 2nd ed. Oxford: Oxford University Press (2014; Zbl 1304.76002)]. However, the original technique fails to give comparable performance in its given form when applied to variable coefficient Navier-Stokes systems such as those arising in two-phase flow models. Here we develop a generalization of this preconditioner appropriate for two-phase flow, requiring a new form for PCD. We omit considerations of boundary conditions to focus on the key features of two-phase flow. Before considering our target application, we present numerical results within the controlled setting of a simplified problem using a variety of different mixed elements. We compare these results with those for a straightforward extension to another commutator-based method known as the “least-squares commutator” (LSC) preconditioner, a technique also discussed in the aforementioned reference. We demonstrate that favorable properties of the original PCD and LSC preconditioners (without boundary adjustments) are retained with the new preconditioners in the two-phase situation.

MSC:

76M12 Finite volume methods applied to problems in fluid mechanics
65F08 Preconditioners for iterative methods
65F10 Iterative numerical methods for linear systems
65N22 Numerical solution of discretized equations for boundary value problems involving PDEs
76D05 Navier-Stokes equations for incompressible viscous fluids
76D07 Stokes and related (Oseen, etc.) flows
76T10 Liquid-gas two-phase flows, bubbly flows

Citations:

Zbl 1304.76002
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] I. Akkerman, Y. Bazilevs, C. E. Kees, and M. W. Farthing, Isogeometric analysis of free-surface flow, J. Comput. Phys., 230 (2011), pp. 4137-4152. · Zbl 1343.76040
[2] O. Axelsson, X. He, and M. Neytcheva, Numerical solution of the time-dependent Navier-Stokes equation for variable density-variable viscosity. Part \rm I, Math. Model. Anal., 20 (2015), pp. 232-260. · Zbl 1488.76084
[3] A. Bentley, N. Bootland, A. Wathen, and C. Kees, Implementation Details of the Level Set Two-Phase Navier-Stokes Equations in Proteus, Technical report TR2017-10, Department of Mathematical Sciences, Clemson University, 2017, http://www.clemson.edu/science/departments/math-stat/about/technical-reports.html.
[4] M. Benzi and M. A. Olshanskii, Field-of-values convergence analysis of augmented Lagrangian preconditioners for the linearized Navier-Stokes problem, SIAM J. Numer. Anal., 49 (2011), pp. 770-788. · Zbl 1245.76044
[5] M. Benzi, M. A. Olshanskii, and Z. Wang, Modified augmented Lagrangian preconditioners for the incompressible Navier-Stokes equations, Internat. J. Numer. Methods Fluids, 66 (2011), pp. 486-508. · Zbl 1421.76152
[6] J. Boyle, M. Mihajlović, and J. Scott, HSL_MI20: An efficient AMG preconditioner for finite element problems in 3D, Internat. J. Numer. Methods Engrg., 82 (2010), pp. 64-98. · Zbl 1183.76799
[7] J. U. Brackbill, D. B. Kothe, and C. Zemach, A continuum method for modeling surface tension, J. Comput. Phys., 100 (1992), pp. 335-354. · Zbl 0775.76110
[8] C. Burstedde, O. Ghattas, G. Stadler, T. Tu, and L. C. Wilcox, Parallel scalable adjoint-based adaptive solution of variable-viscosity Stokes flow problems, Comput. Methods Appl. Mech. Engrg., 198 (2009), pp. 1691-1700. · Zbl 1227.76027
[9] J. Cahouet and J.-P. Chabard, Some fast 3D finite element solvers for the generalized Stokes problem, Internat. J. Numer. Methods Fluids, 8 (1988), pp. 869-895. · Zbl 0665.76038
[10] M. Cai, A. Nonaka, J. B. Bell, B. E. Griffith, and A. Donev, Efficient variable-coefficient finite-volume Stokes solvers, Commun. Comput. Phys., 16 (2014), pp. 1263-1297. · Zbl 1373.76119
[11] R. Codina, A stabilized finite element method for generalized stationary incompressible flows, Comput. Methods Appl. Mech. Engrg., 190 (2001), pp. 2681-2706. · Zbl 0996.76045
[12] A. Collagrossi and M. Landrini, Numerical simulation of interfacial flows by smoothed particle hydrodynamics, J. Comput. Phys., 191 (2003), pp. 448-475. · Zbl 1028.76039
[13] E. C. Cyr, J. N. Shadid, and R. S. Tuminaro, Stabilization and scalable block preconditioning for the Navier-Stokes equations, J. Comput. Phys., 231 (2012), pp. 345-363. · Zbl 1426.76241
[14] C. R. Dohrmann and P. B. Bochev, A stabilized finite element method for the Stokes problem based on polynomial pressure projections, Internat. J. Numer. Methods Fluids, 46 (2004), pp. 183-201. · Zbl 1060.76569
[15] H. Elman, V. E. Howle, J. Shadid, R. Shuttleworth, and R. Tuminaro, Block preconditioners based on approximate commutators, SIAM J. Sci. Comput., 27 (2006), pp. 1651-1668. · Zbl 1100.65042
[16] H. Elman, V. E. Howle, J. Shadid, R. Shuttleworth, and R. Tuminaro, A taxonomy and comparison of parallel block multi-level preconditioners for the incompressible Navier-Stokes equations, J. Comput. Phys., 227 (2008), pp. 1790-1808. · Zbl 1290.76023
[17] H. Elman, V. E. Howle, J. Shadid, D. Silvester, and R. Tuminaro, Least squares preconditioners for stabilized discretizations of the Navier-Stokes equations, SIAM J. Sci. Comput., 30 (2007), pp. 290-311. · Zbl 1166.65326
[18] H. C. Elman, Preconditioning for the steady-state Navier-Stokes equations with low viscosity, SIAM J. Sci. Comput., 20 (1999), pp. 1299-1316. · Zbl 0935.76057
[19] H. C. Elman, A. Ramage, and D. J. Silvester, Algorithm 866: IFISS, a Matlab toolbox for modelling incompressible flow, ACM Trans. Math. Software, 33 (2007), 14. · Zbl 1365.65326
[20] H. C. Elman, D. J. Silvester, and A. J. Wathen, Finite Elements and Fast Iterative Solvers: with Applications in Incompressible Fluid Dynamics, 2nd ed., Oxford University Press, Oxford, 2014. · Zbl 1304.76002
[21] R. D. Falgout and U. M. Yang, hypre: A library of high performance preconditioners, in Computational Science – ICCS 2002, Lecture Notes in Comput. Sci. 2331, P. M. A. Sloot, A. G. Hoekstra, C. J. K. Tan, and J. J. Dongarra, eds., Springer, Berlin, 2002, pp. 632-641. · Zbl 1056.65046
[22] P. P. Grinevich and M. A. Olshanskii, An iterative method for the Stokes-type problem with variable viscosity, SIAM J. Sci. Comput., 31 (2009), pp. 3959-3978. · Zbl 1410.76290
[23] S. Groß, V. Reichelt, and A. Reusken, A finite element based level set method for two-phase incompressible flows, Comput. Vis. Sci., 9 (2006), pp. 239-257. · Zbl 1119.76042
[24] J. L. Guermond, P. Minev, and J. Shen, An overview of projection methods for incompressible flows, Comput. Methods Appl. Mech. Engrg., 195 (2006), pp. 6011-6045. · Zbl 1122.76072
[25] F. H. Harlow and J. E. Welch, Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface, Phys. Fluids, 8 (1965), pp. 2182-2189. · Zbl 1180.76043
[26] X. He and M. Neytcheva, Preconditioning the incompressible Navier-Stokes equations with variable viscosity, J. Comput. Math., 30 (2012), pp. 461-482. · Zbl 1274.76250
[27] X. He, M. Neytcheva, and C. Vuik, On Preconditioning Incompressible Non-Newtonian Flow Problems, Technical report 13-07, Reports of the Delft Institute of Applied Mathematics, Delft University of Technology, 2013. · Zbl 1349.76011
[28] T. J. R. Hughes, Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods, Comput. Methods Appl. Mech. Engrg., 127 (1995), pp. 387-401. · Zbl 0866.76044
[29] I. C. F. Ipsen, A note on preconditioning nonsymmetric matrices, SIAM J. Sci. Comput., 23 (2001), pp. 1050-1051. · Zbl 0998.65049
[30] D. Kay, D. Loghin, and A. Wathen, A preconditioner for the steady-state Navier-Stokes equations, SIAM J. Sci. Comput., 24 (2002), pp. 237-256. · Zbl 1013.65039
[31] C. E. Kees, I. Akkerman, M. W. Farthing, and Y. Bazilevs, A conservative level set method suitable for variable-order approximations and unstructured meshes, J. Comput. Phys., 230 (2011), pp. 4536-4558. · Zbl 1416.76214
[32] A. Klawonn and G. Starke, Block triangular preconditioners for nonsymmetric saddle point problems: Field-of-values analysis, Numer. Math., 81 (1999), pp. 577-594. · Zbl 0922.65021
[33] I. N. Konshin, M. A. Olshanskii, and Y. V. Vassilevski, ILU preconditioners for nonsymmetric saddle-point matrices with application to the incompressible Navier-Stokes equations, SIAM J. Sci. Comput., 37 (2015), pp. A2171-A2197. · Zbl 1326.76061
[34] X. S. Li and J. W. Demmel, SuperLU_DIST: A scalable distributed-memory sparse direct solver for unsymmetric linear systems, ACM Trans. Math. Software, 29 (2003), pp. 110-140. · Zbl 1068.90591
[35] X. S. Li, J. W. Demmel, J. R. Gilbert, L. Grigori, M. Shao, and I. Yamazaki, SuperLU Users’ Guide, Technical report LBNL-44289, Lawrence Berkeley National Laboratory, Berkeley, CA, 1999. http://crd.lbl.gov/ xiaoye/SuperLU/.
[36] P. T. Lin, M. Sala, J. N. Shadid, and R. S. Tuminaro, Performance of fully coupled algebraic multilevel domain decomposition preconditioners for incompressible flow and transport, Internat. J. Numer. Methods Engrg., 67 (2006), pp. 208-225. · Zbl 1110.76315
[37] D. Loghin and A. J. Wathen, Analysis of preconditioners for saddle-point problems, SIAM J. Sci. Comput., 25 (2004), pp. 2029-2049. · Zbl 1067.65048
[38] D. A. May, J. Brown, and L. Le Pourhiet, A scalable, matrix-free multigrid preconditioner for finite element discretizations of heterogeneous Stokes flow, Comput. Methods Appl. Mech. Engrg., 290 (2015), pp. 492-523. · Zbl 1423.76259
[39] D. A. May and L. Moresi, Preconditioned iterative methods for Stokes flow problems arising in computational geodynamics, Phys. Earth Planet. Interiors, 171 (2008), pp. 33-47.
[40] M. F. Murphy, G. H. Golub, and A. J. Wathen, A note on preconditioning for indefinite linear systems, SIAM J. Sci. Comput., 21 (2000), pp. 1969-1972. · Zbl 0959.65063
[41] M. A. Olshanskii, J. Peters, and A. Reusken, Uniform preconditioners for a parameter dependent saddle point problem with application to generalized Stokes interface equations, Numer. Math., 105 (2006), pp. 159-191. · Zbl 1120.65059
[42] M. A. Olshanskii and A. Reusken, Convergence analysis of a multigrid method for a convection-dominated model problem, SIAM J. Numer. Anal., 42 (2004), pp. 1261-1291. · Zbl 1080.65105
[43] M. A. Olshanskii and A. Reusken, Analysis of a Stokes interface problem, Numer. Math., 103 (2006), pp. 129-149. · Zbl 1092.65104
[44] M. A. Olshanskii and Y. V. Vassilevski, Pressure Schur complement preconditioners for the discrete Oseen problem, SIAM J. Sci. Comput., 29 (2007), pp. 2686-2704. · Zbl 1252.65070
[45] A. Quarteroni and A. Valli, Domain Decomposition Methods for Partial Differential Equations, Oxford University Press, Oxford, 1999. · Zbl 0931.65118
[46] M. Rudman, Volume-tracking methods for interfacial flow calculations, Internat. J. Numer. Methods Fluids, 24 (1997), pp. 671-691. · Zbl 0889.76069
[47] Y. Saad and M. H. Schultz, GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 7 (1986), pp. 856-869. · Zbl 0599.65018
[48] D. Silvester, H. Elman, D. Kay, and A. Wathen, Efficient preconditioning of the linearized Navier-Stokes equations for incompressible flow, J. Comput. Appl. Math., 128 (2001), pp. 261-279. · Zbl 0983.76051
[49] D. J. Silvester, H. C. Elman, and A. Ramage, Incompressible Flow and Iterative Solver Software (IFISS), Version 3.3, 2013, http://www.manchester.ac.uk/ifiss/.
[50] T. E. Tezduyar, Stabilized finite element formulations for incompressible flow computations, Adv. Appl. Math., 28 (1992), pp. 1-44. · Zbl 0747.76069
[51] M. ur Rehman, T. Geenen, C. Vuik, G. Segal, and S. P. MacLachlan, On iterative methods for the incompressible Stokes problem, Internat. J. Numer. Methods Fluids, 65 (2011), pp. 1180-1200. · Zbl 1429.76073
[52] M. ur Rehman, C. Vuik, and G. Segal, A comparison of preconditioners for incompressible Navier-Stokes solvers, Internat. J. Numer. Methods Fluids, 57 (2008), pp. 1731-1751. · Zbl 1262.76083
[53] M. ur Rehman, C. Vuik, and G. Segal, SIMPLE-type preconditioners for the Oseen problem, Internat. J. Numer. Methods Fluids, 61 (2009), pp. 432-452. · Zbl 1171.76033
[54] S. P. Vanka, Block-implicit multigrid solution of Navier-Stokes equations in primative variables, J. Comput. Phys., 65 (1986), pp. 138-158. · Zbl 0606.76035
[55] M. Wang and L. Chen, Multigrid methods for the Stokes equations using distributive Gauss-Seidel relaxations based on the least squares commutator, J. Sci. Comput., 56 (2013), pp. 409-431. · Zbl 1426.76316
[56] A. J. Wathen, Realistic eigenvalue bounds for the Galerkin mass matrix, IMA J. Numer. Anal., 7 (1987), pp. 449-457. · Zbl 0648.65076
[57] A. J. Wathen and T. Rees, Chebyshev semi-iteration in preconditioning for problems including the mass matrix, Electron. Trans. Numer. Anal., 34 (2009), pp. 125-135. · Zbl 1189.65065
[58] Z. Q. Zhou, J. O. De Kat, and B. Buchner, A nonlinear 3-D approach to simulate green water dynamics on deck, in Proceedings of the 7th International Conference on Numerical Ship Hydrodyn, J. Piquet, ed., Nantes, Ft. Belvoir OTIC, Fairfax County, VA, 1999, 5.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.