×

A unified group theoretical method for the partial Fourier analysis on semi-direct product of locally compact groups. (English) Zbl 1315.43004

The author defines the \(\tau\)-dual group (partial dual group) \(G_{ \hat{\tau}}\) of \(G_{\tau }=H\ltimes _{\tau }K\). This group is the semi-direct product of \(H\) and \(\hat{K}\) with respect to the continuous homomorphism \(\hat{\tau}:H\rightarrow \mathrm{Aut}\left( \hat{K}\right) \) and it is given by \(\hat{\tau}_{h}\left( \omega \right) :=\omega \circ \tau _{h^{-1}}\) for all \( h\in H\) and \(\omega \in \hat{K}\). Then the author generalizes the Pontrjagin duality theorem which says that the \(\hat{\tau}\)-dual group and \(G_{\tau }\) are isomorphic (see the third section). In the fourth section, the author defines the \(\tau\)-Fourier transform. Then for this transform, a Parseval formula is proved. So it is shown that the \(\tau\)-Fourier transform is a unitary transform from \(L^{2}\left( G_{\tau }\right) \) onto \(L^{2}\left( G_{\tau }\right) \). Finally, the author proves an inversion formula for the \( \tau\)-Fourier transform.
In the last section, the author considers the affine group \(ax+b\), Euclidean groups and the Weyl-Heisenberg group for the \(\tau\)-Fourier transform. In this paper, there is a unified group theoretical approach to partial Fourier analysis on semi-direct products of locally compact groups. Since the partial Fourier analysis has many applications in science and engineering problems this paper is highly important.

MSC:

43A25 Fourier and Fourier-Stieltjes transforms on locally compact and other abelian groups
22D45 Automorphism groups of locally compact groups
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Ali S.T., Antoine J.P., Gazeau J.P.: Coherent States, Wavelets and Their Generalizations. Springer, New York (2000) · Zbl 1064.81069 · doi:10.1007/978-1-4612-1258-4
[2] Chirikjian, G., Kyatkin, A.: Engineering Applications of Noncommutative Harmonic Analysis With Emphasis on Rotation and Motion Groups. CRC Press, Boca Raton (2001) · Zbl 1100.42500
[3] Cohen L.: Time-Frequency Analysis. Prentice-Hall, New York (1995)
[4] Corwin L., Greenleaf F.P.: Representations of Nilpotent Lie Groups and Their Applications. Part 1: Basic Theory and Examples, vol. 18. Cambridge University Press, Cambridge (1990) · Zbl 0704.22007
[5] Daubechies I.: Ten Lectures on Wavelets. SIAM, Philadelphia (1992) · Zbl 0776.42018 · doi:10.1137/1.9781611970104
[6] Deng, L., Yu, C. L., Chakrabarti, C., Kim, J., Narayanan, V.: Efficient image reconstruction using partial 2D Fourier transform. In: Signal Processing Systems, 2008. SiPS 2008. IEEE, New York. doi:10.1109/SIPS.2008.4671736
[7] Dixmier J.: C*-Algebras. North-Holland, Amsterdam (1977)
[8] Fell, J., Doran, R.: Representations of *-Algebras, Locally Compact Groups, and Banach *-Algebraic Bundles, Pure and Applied Mathematics, vol. 1, 1st edn. Academic Press (1998) · Zbl 0652.46050
[9] Fell, J., Doran, R.: Representations of *-Algebras, Locally Compact Groups, and Banach *-Algebraic Bundles, Pure and Applied Mathematics, vol. 2, 1st edn. Academic Press (1998) · Zbl 0652.46050
[10] Folland G.B.: A Course in Abstract Harmonic Analysis. CRC Press, Boca Raton (1995) · Zbl 0857.43001
[11] Folland G.B.: Real analysis, Modern Techniques and Their Applications. Wiley, New York (1999) · Zbl 0924.28001
[12] Führ H.: Abstract Harmonic Analysis of Continuous Wavelet Transforms. Springer, Berlin (2005) · Zbl 1060.43002
[13] Führ, H., Mayer, M.: Continuous wavelet transforms from semidirect products, cyclic representation and Plancherel Measure. J. Fourier Anal. Appl. 8(4), 375-398 (2002) · Zbl 1100.42030
[14] Heil C., Walnut F.D.: Continuous and discrete wavelet transforms. SIAM Rev. 31(4), 628-666 (1989) · Zbl 0683.42031 · doi:10.1137/1031129
[15] Helgason S.: The Radon Transform. Birkhäuser, Basel (1980) · Zbl 0453.43011 · doi:10.1007/978-1-4899-6765-7
[16] Hewitt, E., Ross, K.A.: Abstract Harmonic Analysis, vol. 1. Springer, Berlin (1963) · Zbl 0115.10603
[17] Hewitt, E., Ross, K.A.: Abstract Harmonic Analysis, vol. 2. Springer, Berlin (1969) · Zbl 0837.43002
[18] Hochschild, G.: The Structure of Lie Groups. Holden-day, San Francisco (1965) · Zbl 0131.02702
[19] Ishi H.: Wavelet transform for semi-direct product groups with not necessarily commutative normal subgroups. J. Fourier Anal. App. 12(1), 37-52 (2006) · Zbl 1090.42022 · doi:10.1007/s00041-005-5002-0
[20] Kirillov, A.A., Neretin, Y.A.: Representation Theory and Non-commutative Harmonic Analysis I: Fundamental Concepts. Representations of Virasoro and Affine Algebras, vol. 1. Springer. http://www.springer.com/mathematics/algebra/book/978-3-540-18698-4 (1994)
[21] Kirsch A.: An Introduction to the Mathematical Theory of Inverse Problems. Springer, Berlin (1996) · Zbl 0865.35004 · doi:10.1007/978-1-4612-5338-9
[22] Liang Z.P., Lauterbur P.C.: Principles of Magnetic Resonance Imaging: A Signal Processing Perspective. SPIE Optical Engineering Press, Bellingham (2000)
[23] Lipsman R.: Non-Abelian Fourier Analysis. Bull. Sci. Math. 2e Ser. 98, 209-233 (1974) · Zbl 0298.43008
[24] Mackey G.W.: Induced representation of locally compact groups I. Ann. Math. 58, 101-139 (1952) · Zbl 0046.11601 · doi:10.2307/1969423
[25] Mackey G.W.: Induced representation of locally compact groups II. Ann. Math. 58, 193-221 (1953) · Zbl 0051.01901 · doi:10.2307/1969786
[26] McGibney, G., Smith, M.R., Nichols, S.T., Crawley, A.: Quantitative evaluation of several partial Fourier reconstruction algorithms used in MRI. Magn. Reson. Med. 30(1), 51-9 (1993)
[27] Natterer F.: The Mathematics of Computerized Tomography. SIAM, Philadelphia (2001) · Zbl 0973.92020 · doi:10.1137/1.9780898719284
[28] Natterer F., Wubbeling F.: Mathematical Methods in Image Reconstruction. Monographs on Mathematical Modeling and Computation. SIAM, Philadelphia (2001) · Zbl 0974.92016 · doi:10.1137/1.9780898718324
[29] Peter K.: The Radon Transform and Medical Imaging. SIAM, Philadelphia (2014) · Zbl 1282.92001
[30] Reiter H., Stegeman J.D.: Classical Harmonic Analysis and Locally Compact Groups, 2nd edn. Oxford University Press, Oxford (2000) · Zbl 0965.43001
[31] Segal I.E.: An extension of Plancherel’s formula to separable unimodular groups. Ann. Math 52, 272-292 (1950) · Zbl 0041.36312 · doi:10.2307/1969470
[32] Stankovic, R., Moraga, C., Astola, J.: Fourier Analysis on Finite Groups with Applications in Signal Processing and System Design. IEEE, New York (2005)
[33] Taylor, M.E.: Noncommutative harmonic analysis. Mathematics Surveys and Monographs, vol. 22. American Mathematical Society, Providence (1986) · Zbl 0604.43001
[34] Terras A.: Fourier Analysis on Finite Groups and Applications, vol. 43. Cambridge University Press, Cambridge (1999) · Zbl 0928.43001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.