×

A re-scaling spectral collocation method for the nonlinear fractional pantograph delay differential equations with non-smooth solutions. (English) Zbl 07654058

Summary: The convergence analysis of the spectral methods of the fractional differential equations is generally carried out on the assumption that the underlying solution is sufficiently smooth. Due to the limited smoothing property of the solution operator, these methods fail to achieve spectral accuracy. This work aims to study a spectral collocation approach for the fractional nonlinear pantograph delay differential equations with nonsmooth solutions. The fractional-order derivative is considered in the Caputo sense. An auxiliary transformation is adapted to match the singularity in the corresponding solution and to maximize the convergence rate of the proposed scheme. Therefore, the solution of the resulting equation will possess better regularity and then the numerical method can achieve the spectral accuracy, which serves as an improvement compared with the existing results in the literature. The spectral convergence rate for the proposed approach is discussed in the weighted \(L^2\)-norm and the \(L^\infty\)-norm. Finally, numerical results are given to confirm our theoretical analysis.

MSC:

65Lxx Numerical methods for ordinary differential equations
65Mxx Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
34Kxx Functional-differential equations (including equations with delayed, advanced or state-dependent argument)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Yang, C.; Lv, X., Generalized Jacobi spectral Galerkin method for fractional pantograph differential equation, Math Methods Appl Sci, 44, 1, 153-165 (2021) · Zbl 1512.65168
[2] Čermák, J., The stability and asymptotic properties of the \(\Theta \)-methods for the pantograph equation, IMA J Numer Anal, 31, 4, 1533-1551 (2011) · Zbl 1230.65074
[3] Rahimkhani, P.; Ordokhani, Y.; Babolian, E., Müntz-Legendre wavelet operational matrix of fractional-order integration and its applications for solving the fractional pantograph differential equations, Numer Algorithms, 77, 4, 1283-1305 (2018) · Zbl 1402.65061
[4] Sedaghat, S.; Ordokhani, Y.; Dehghan, M., Numerical solution of the delay differential equations of pantograph type via Chebyshev polynomials, Commun Nonlinear Sci Numer Simul, 17, 12, 4815-4830 (2012) · Zbl 1266.65115
[5] Fox, L.; Mayers, D. F.; Ockendon, J. R.; Tayler, A. B., On a functional differential equation, IMA J Appl Math, 8, 3, 271-307 (1971) · Zbl 0251.34045
[6] Ockendon, J. R.; Tayler, A. B., The dynamics of a current collection system for an electric locomotive, Proc R Soc Lond Ser A Math Phys Eng Sci, 322, 1551, 447-468 (1971)
[7] Derfel, G. A., Kato problem for functional-differential equations and difference Schrödinger operators, (Order, disorder and chaos in quantum systems (1990), Springer), 319-321 · Zbl 0728.34067
[8] Iserles, A., On the generalized pantograph functional-differential equation, European J Appl Math, 4, 1, 1-38 (1993) · Zbl 0767.34054
[9] Li, D.; Zhang, C., Long time numerical behaviors of fractional pantograph equations, Math Comput Simulation, 172, 244-257 (2020) · Zbl 1482.34189
[10] Gong, Z.; Liu, C.; Teo, K. L.; Yi, X., Optimal control of nonlinear fractional systems with multiple pantograph-delays, Appl Math Comput, 425, Article 127094 pp. (2022) · Zbl 1510.49003
[11] Stynes, M., Too much regularity may force too much uniqueness, Fract Calc Appl Anal, 19, 6, 1554-1562 (2016) · Zbl 1353.35306
[12] Yang, C.; Hou, J.; Lv, X., Jacobi spectral collocation method for solving fractional pantograph delay differential equations, Eng Comput, 1-10 (2020)
[13] Zheng, W.; Chen, Y., A spectral method for a weakly singular Volterra integro-differential equation with pantograph delay, Acta Math Sci, 42, 1, 387-402 (2022) · Zbl 1513.65541
[14] Ezz-Eldien, S. S.; Wang, Y.; Abdelkawy, M. A.; Zaky, M. A.; Aldraiweesh, A. A.; Machado, J. T., Chebyshev spectral methods for multi-order fractional neutral pantograph equations, Nonlinear Dynam, 100, 4, 3785-3797 (2020) · Zbl 1516.34016
[15] Zaky, M. A.; Ameen, I. G., A priori error estimates of a Jacobi spectral method for nonlinear systems of fractional boundary value problems and related Volterra-Fredholm integral equations with smooth solutions, Numer Algorithms, 84, 1, 63-89 (2020) · Zbl 1453.65198
[16] Ameen, I. G.; Elkot, N. A.; Zaky, M. A.; Hendy, A. S.; Doha, E. H., A pseudo-spectral scheme for systems of two-point boundary value problems with file and right sided fractional derivatives and related integral equations, CMES Comput Model Eng Sci, 128, 1, 21-41 (2021)
[17] Zaky, M. A.; Ameen, I. G.; Elkot, N. A.; Doha, E. H., A unified spectral collocation method for nonlinear systems of multi-dimensional integral equations with convergence analysis, Appl Numer Math, 161, 27-45 (2021) · Zbl 1459.65250
[18] Zaky, M. A.; Ameen, I. G., On the rate of convergence of spectral collocation methods for nonlinear multi-order fractional initial value problems, Comput Appl Math, 38, 3, 1-27 (2019) · Zbl 1438.65260
[19] Zaky, M. A.; Hendy, A. S.; Suragan, D., Logarithmic Jacobi collocation method for Caputo-Hadamard fractional differential equations, Appl Numer Math, 181, 326-346 (2022) · Zbl 1498.65114
[20] Wang, C.; Wang, Z.; Wang, L., A spectral collocation method for nonlinear fractional boundary value problems with a Caputo derivative, J Sci Comput, 76, 1, 166-188 (2018) · Zbl 1402.65172
[21] Xu, M.-Q.; Lin, Y.-Z., Simplified reproducing kernel method for fractional differential equations with delay, Appl Math Lett, 52, 156-161 (2016) · Zbl 1330.65102
[22] Shi, L.; Chen, Z.; Ding, X.; Ma, Q., A new stable collocation method for solving a class of nonlinear fractional delay differential equations, Numer Algorithms, 85, 4, 1123-1153 (2020) · Zbl 1456.65055
[23] Chen, Z.; Gou, Q., Piecewise picard iteration method for solving nonlinear fractional differential equation with proportional delays, Appl Math Comput, 348, 465-478 (2019) · Zbl 1429.65134
[24] Hashemi, M. S.; Ashpazzadeh, E.; Moharrami, M.; Lakestani, M., Fractional order alpert multiwavelets for discretizing delay fractional differential equation of pantograph type, Appl Numer Math, 170, 1-13 (2021) · Zbl 1482.65102
[25] Yang, C.; Hou, J., Jacobi spectral approximation for boundary value problems of nonlinear fractional pantograph differential equations, Numer Algorithms, 86, 3, 1089-1108 (2021) · Zbl 1458.65072
[26] Alsuyuti, M. M.; Doha, E. H.; Ezz-Eldien, S. S.; Youssef, I. K., Spectral Galerkin schemes for a class of multi-order fractional pantograph equations, J Comput Appl Math, 384, Article 113157 pp. (2021) · Zbl 1456.65129
[27] Alsuyuti, M. M.; Doha, E. H.; Ezz-Eldien, S. S., Galerkin operational approach for multi-dimensions fractional differential equations, Commun Nonlinear Sci Numer Simul, 114, Article 106608 pp. (2022) · Zbl 07567362
[28] Hou, D.; Xu, C., A fractional spectral method with applications to some singular problems, Adv Comput Math, 43, 5, 911-944 (2017) · Zbl 1382.65467
[29] Botella, O.; Peyret, R., Computing singular solutions of the Navier-Stokes equations with the Chebyshev-collocation method, Internat J Numer Methods Fluids, 36, 2, 125-163 (2001) · Zbl 0987.76070
[30] Schultz, W. W.; Lee, N. Y.; Boyd, J. P., Chebyshev pseudospectral method of viscous flows with corner singularities, J Sci Comput, 4, 1, 1-24 (1989) · Zbl 0679.76042
[31] Chen, S.; Shen, J., Enriched spectral methods and applications to problems with weakly singular solutions, J Sci Comput, 77, 3, 1468-1489 (2018) · Zbl 1406.65123
[32] Zaky, M. A.; Hendy, A. S.; Macías-Díaz, J. E., Semi-implicit Galerkin-Legendre spectral schemes for nonlinear time-space fractional diffusion-reaction equations with smooth and nonsmooth solutions, J Sci Comput, 82, 1, 1-27 (2020) · Zbl 1433.65247
[33] Khosravian-Arab, H.; Eslahchi, M. R., Müntz Sturm-Liouville problems: Theory and numerical experiments, Fract Calc Appl Anal, 24, 3, 775-817 (2021) · Zbl 1498.34033
[34] Hafez, R. M.; Zaky, M. A.; Hendy, A. S., A novel spectral Galerkin/Petrov-Galerkin algorithm for the multi-dimensional space-time fractional advection-diffusion-reaction equations with nonsmooth solutions, Math Comput Simulation, 190, 678-690 (2021) · Zbl 07431537
[35] Zaky, M. A.; Ameen, I. G., A novel Jacob spectral method for multi-dimensional weakly singular nonlinear Volterra integral equations with nonsmooth solutions, Eng Comput, 37, 4, 2623-2631 (2021)
[36] Zaky, M. A., An accurate spectral collocation method for nonlinear systems of fractional differential equations and related integral equations with nonsmooth solutions, Appl Numer Math, 154, 205-222 (2020) · Zbl 1442.65464
[37] Zaky, M. A., Recovery of high order accuracy in Jacobi spectral collocation methods for fractional terminal value problems with non-smooth solutions, J Comput Appl Math, 357, 103-122 (2019) · Zbl 1415.41001
[38] Bhrawy, A. H.; Zaky, M. A., Shifted fractional-order Jacobi orthogonal functions: Application to a system of fractional differential equations, Appl Math Model, 40, 2, 832-845 (2016) · Zbl 1446.34011
[39] Chen, S.; Shen, J.; Wang, L., Generalized Jacobi functions and their applications to fractional differential equations, Math Comp, 85, 300, 1603-1638 (2016) · Zbl 1335.65066
[40] Liu, W.; Wang, L.-L.; Xiang, S., A new spectral method using nonstandard singular basis functions for time-fractional differential equations, Commun Appl Math Comput, 1, 2, 207-230 (2019) · Zbl 1463.65325
[41] Zayernouri, M.; Ainsworth, M.; Karniadakis, G. E., A unified Petrov-Galerkin spectral method for fractional PDEs, Comput Methods Appl Mech Engrg, 283, 1545-1569 (2015) · Zbl 1425.65127
[42] Sakamoto, K.; Yamamoto, M., Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems, J Math Anal Appl, 382, 1, 426-447 (2011) · Zbl 1219.35367
[43] Hou, D.; Hasan, M. T.; Xu, C., Müntz spectral methods for the time-fractional diffusion equation, Comput Methods Appl Math, 18, 1, 43-62 (2018) · Zbl 1382.65343
[44] Mastroianni, G.; Occorsio, D., Optimal systems of nodes for Lagrange interpolation on bounded intervals. A survey, J Comput Appl Math, 134, 1-2, 325-341 (2001) · Zbl 0990.41003
[45] Hafshejani, M. S.; Vanani, S. K.; Hafshejani, J. S., Numerical solution of delay differential equations using Legendre wavelet method, World Appl Sci J, 13, 27-33 (2011)
[46] Saeed, U.; ur Rehman, M.; Iqbal, M. A., Modified Chebyshev wavelet methods for fractional delay-type equations, Appl Math Comput, 264, 431-442 (2015) · Zbl 1410.65286
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.