×

A novel Bayesian strategy for the identification of spatially varying material properties and model validation: an application to static elastography. (English) Zbl 1246.74021

Summary: The present paper proposes a novel Bayesian, a computational strategy in the context of model-based inverse problems in elastostatics. On one hand, we attempt to provide probabilistic estimates of the material properties and their spatial variability that account for the various sources of uncertainty. On the other hand, we attempt to address the question of model fidelity in relation to the experimental reality and particularly in the context of the material constitutive law adopted. This is especially important in biomedical settings when the inferred material properties will be used to make decisions/diagnoses. We propose an expanded parametrization that enables the quantification of model discrepancies in addition to the constitutive parameters. We propose scalable computational strategies for carrying out inference and learning tasks and demonstrate their effectiveness in numerical examples with noiseless and noisy synthetic data.

MSC:

74G75 Inverse problems in equilibrium solid mechanics
74S60 Stochastic and other probabilistic methods applied to problems in solid mechanics
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Oberai, Linear and nonlinear elasticity imaging of soft tissue in vivo: demonstration of feasibility, Physics in Medicine and Biology 54 (5) pp 1191– (2009) · doi:10.1088/0031-9155/54/5/006
[2] Ganne-Carrié, Accuracy of liver stiffness measurement for the diagnosis of cirrhosis in patients with chronic liver diseases, Hepatology 44 (6) pp 1511– (2006) · doi:10.1002/hep.21420
[3] Ophir, Elastography - a quantitative method for imaging the elasticity of biological tissues, Ultrasonic Imaging 13 (2) pp 111– (1991) · doi:10.1016/0161-7346(91)90079-W
[4] Garra, Elastography of breast lesions: initial clinical results, Radiology 202 (1) pp 79– (1997) · doi:10.1148/radiology.202.1.8988195
[5] Bamber, Progress in freehand elastography of the breast, IEICE Transactions on Information and Systems E85D (1) pp 5– (2002)
[6] Hall, In vivo real-time freehand palpation imaging, Ultrasound in Medicine and Biology 29 (3) pp 427– (2003) · doi:10.1016/S0301-5629(02)00733-0
[7] Giuseppetti, Elastosonography in the diagnosis of the nodular breast lesions: preliminary report, Radiologia Medica 110 (1-2) pp 69– (2005)
[8] Itoh, Breast disease: clinical application of US elastography for diagnosis, Radiology 239 (2) pp 341– (2006) · doi:10.1148/radiol.2391041676
[9] Thomas, Real-time elastography- an advanced method of ultrasound: first results in 108 patients with breast lesions, Ultrasound in Obstetrics and Gynecology 28 (3) pp 335– (2006) · doi:10.1002/uog.2823
[10] Regner, Breast lesions: evaluation with US strain imaging-clinical experience of multiple observers, Radiology 238 (2) pp 425– (2006) · doi:10.1148/radiol.2381041336
[11] Burnside, Differentiating benign from malignant solid breast masses with US strain imaging, Radiology 245 (2) pp 401– (2007) · doi:10.1148/radiol.2452061805
[12] Zhi, Comparison of ultrasound elastography, mammography, and sonography in the diagnosis of solid breast lesions, Journal of Ultrasound in Medicine 26 (6) pp 807– (2007) · doi:10.7863/jum.2007.26.6.807
[13] Parker, Imaging the elastic properties of tissue: the 20 year perspective, Physics in Medicine and Biology 56 (1) pp R1-R29– (2011) · doi:10.1088/0031-9155/56/1/R01
[14] Barbone, Adjointweighted variational formulation for the direct solution of inverse problems of general linear elasticity with full interior data, International Journal for Numerical Methods in Eengineering 81 (13) pp 1713– (2010)
[15] McLaughlin, Using level set based inversion of arrival times to recover shear wave speed in transient elastography and supersonic imaging, Inverse Problems 22 (2) pp 707– (2006) · Zbl 1095.35073 · doi:10.1088/0266-5611/22/2/019
[16] Albocher, Adjoint-weighted equation for inverse problems of incompressible plane-stress elasticity, Computer Methods in Applied Mechanics and Engineering 198 (30-32) pp 2412– (2009) · Zbl 1229.74047 · doi:10.1016/j.cma.2009.02.034
[17] Park, Finite element formulation for shear modulus reconstruction in transient elastography, Inverse Problems in Science and Engineering 17 (5) pp 605– (2009) · Zbl 1168.74032 · doi:10.1080/17415970802358371
[18] Gockenbach, Identification of lame parameters in linear elasticity: a fixed point approach, Journal of Industrial and Management Optimization 1 (4) pp 487– (2005) · Zbl 1085.35127 · doi:10.3934/jimo.2005.1.487
[19] Gockenbach, Equation error approach for elliptic inverse problems with an application to the identification of lame parameters, Inverse Problems in Science and Engineering 16 (3) pp 349– (2008) · Zbl 1258.74087 · doi:10.1080/17415970701602580
[20] Zhang, A constrained genetic approach for computing material property of elastic objects, IEEE Transactions on Evolutionary Computation 10 (3) pp 341– (2006) · Zbl 05452208 · doi:10.1109/TEVC.2005.860767
[21] Oberai, Evaluation of the adjoint equation based algorithm for elasticity imaging, Physics in Medicine and Biology 49 (13) pp 2955– (2004) · doi:10.1088/0031-9155/49/13/013
[22] Fehrenbach, Detection of small inclusions by elastography, Inverse Problems 22 (3) pp 1055– (2006) · Zbl 1099.74028 · doi:10.1088/0266-5611/22/3/020
[23] Doyley, Enhancing the performance of model-based elastography by incorporating additional a priori information in the modulus image reconstruction process, Physics in Medicine and Biology 51 (1) pp 95– (2006) · doi:10.1088/0031-9155/51/1/007
[24] Liu, Tomography-based 3-d anisotropic elastography using boundary measurements, IEEE Transactions on Medical Imaging 24 (10) pp 1323– (2005) · doi:10.1109/TMI.2005.857232
[25] Liew, Recovery of shear modulus in elastography using an ajoint method with b-spline representation, Finite Elements in Analysis and Design 41 (7-8) pp 778– (2005) · doi:10.1016/j.finel.2004.10.009
[26] Banerjee, A pseudo-dynamic sub-optimal filter for elastography under static loading and measurements, Physics in Medicine and Biology 54 (2) pp 285– (2009) · doi:10.1088/0031-9155/54/2/008
[27] Gokhale, Solution of the nonlinear elasticity imaging inverse problem: the compressible case, Inverse Problems 24 (4) pp 045010– (2008) · Zbl 1153.35402 · doi:10.1088/0266-5611/24/4/045010
[28] Arnold, Efficient computation of the elastography inverse problem by combining variational mesh adaption and a clustering technique, Physics in Medicine and Biology 55 (7) pp 2035– (2010) · doi:10.1088/0031-9155/55/7/016
[29] Olson, Numerical simulation of an inverse method for tumour size and location estimation, Inverse Problems in Science and Engineering 18 (6) pp 813– (2010) · Zbl 1196.92023 · doi:10.1080/17415977.2010.497965
[30] Bonnet, Inverse problems in elasticity, Inverse Problems 21 pp R1-R50– (2005) · Zbl 1070.35118 · doi:10.1088/0266-5611/21/2/R01
[31] Kaipio, Computational and Statistical Methods for Inverse Problems (2005)
[32] Higdon, A bayesian calibration approach to the thermal problem, Computer Methods in Applied Mechanics and Engineering 197 (29-32) pp 2431– (2008) · Zbl 1388.80005 · doi:10.1016/j.cma.2007.05.031
[33] Kennedy, Bayesian calibration of computer models, Journal of the Royal Statistical Society Series B-Statistical Methodology 63 pp 425– (2001) · Zbl 1007.62021 · doi:10.1111/1467-9868.00294
[34] Kohn, Determining conductivity by boundary measurements, Communications in Pure and Applied Mathematics 37 pp 289– (1984) · Zbl 0586.35089 · doi:10.1002/cpa.3160370302
[35] Ladéveze, Application of a posteriori error estimation for structural model updating, Inverse Problems 15 pp 49– (1999) · Zbl 0928.74039 · doi:10.1088/0266-5611/15/1/009
[36] Deraemaeker, Model validation in the presence of uncertain experimental data, Engineering Computations 21 (8) pp 21808– (2004) · Zbl 1134.65304 · doi:10.1108/02644400410554335
[37] Feissel, Modified constitutive relation error identification strategy for transient dynamics with corrupted data: the elastic case, Computer Methods in Applied Mechanics and Engineering 196 (13-16) pp 1968– (2007) · Zbl 1173.74415 · doi:10.1016/j.cma.2006.10.005
[38] Besag, Bayesian image restoration, with two applications in spatial statistics (with discussion), Annals of the Institute of Statistical Mathematics 43 (1) pp 1– (1991) · Zbl 0760.62029 · doi:10.1007/BF00116466
[39] Besag, Spatial statistics and Bayesian computation, Journal of the Royal Statistical Society. Series B (Methodological) 55 pp 25– (1993) · Zbl 0800.62572
[40] Kunsch, Intrinsic autoregressions and related models on the two-dimensional lattice, Biometrika 74 pp 517– (1987) · Zbl 0671.62082 · doi:10.1093/biomet/74.3.517
[41] Besag, On conditional and intrinsic autoregressions, Biometrika 82 (4) pp 733– (1995) · Zbl 0899.62123
[42] Higdon, Auxiliary variable methods for Markov chain Monte Carlo with applications, Journal of the American Statistical Association 93 (442) pp 585– (1997) · Zbl 0953.62103 · doi:10.1080/01621459.1998.10473712
[43] Dempster, Maximum likelihood from incomplete data via the EM algorithm (with discussion), Journal of the Royal Statistical Society. Series B (Methodological) 39 (1) pp 1– (1977) · Zbl 0364.62022
[44] Ghahramani, An introduction to hidden Markov models and bayesian networks, Journal of Pattern Recognition and Artificial Intelligence 15 (1) pp 9– (2001) · doi:10.1142/S0218001401000836
[45] Meng, Maximum likelihood estimation via the ecm algorithm: a general framework, Biometrika 80 pp 267– (1993) · Zbl 0778.62022 · doi:10.1093/biomet/80.2.267
[46] Neal, Learning in Graphical Models pp 355– (1998) · doi:10.1007/978-94-011-5014-9_12
[47] Ghahramani Z Attias H Online variational bayesian learning Slides from talk presented at NIPS 2000 workshop on Online Learning 2000
[48] Beal, Bayesian Statistics 7 pp 453– (2003)
[49] Wainwright, Foundations and Trends in Machine Learning 1-2 pp 1– (2008)
[50] Robert, Monte Carlo Statistical Methods (2004) · Zbl 1096.62003 · doi:10.1007/978-1-4757-4145-2
[51] Robbins, A stochastic approximation method, The Annals of Mathematical Statistics 22 pp 400– (1951) · Zbl 0054.05901 · doi:10.1214/aoms/1177729586
[52] Cappé, Inference in Hidden Markov Models (2005)
[53] Delyon, Convergence of a stochastic approximation version of the em algorithm, The Annals of Statistics 27 pp 94– (1999) · Zbl 0932.62094
[54] Kushner, Stochastic Approximation and Recurcive Algorithms and Applications (2003)
[55] Andrieu, Stability of stochastic approximation under verifiable conditions, SIAM Journal on Control and Optimization 44 pp 283– (2005) · Zbl 1083.62073 · doi:10.1137/S0363012902417267
[56] Liang, Stochastic approximation in Monte Carlo computation, Journal of the American Statistical Association 102 pp 305– (2007) · Zbl 1226.65002 · doi:10.1198/016214506000001202
[57] Hughes, Generalization of selective integration procedures to anisotropic and non-linear media, International Journal for Numerical Methods in Engineering 15 pp 1413– (1980) · Zbl 0437.73053 · doi:10.1002/nme.1620150914
[58] Hughes, The Finite Element Method-Linear Static and Dynamic Finite Element Analysis (2000) · Zbl 1191.74002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.