×

Symplectic volumes of certain symplectic quotients associated with the special unitary group of degree three. (English) Zbl 1157.53045

Let \(G\) be a compact Lie group with Lie algebra \(\mathfrak g\). Let \(\mathcal O_1\), \(\mathcal O_2\),\(\cdots\),\(\mathcal O_n\subset \mathfrak g^*\) be coadjoint orbits, which are symplectic manifolds under the Kirillov-Kostant-Souriau symplectic forms. The action of \(G\) on the product symplectic manifold \(\mathcal O_1\times \mathcal O_2\times \cdots\times \mathcal O_n\) is Hamiltonian, with moment map \(\Phi:\mathcal O_1\times \mathcal O_2\times \cdots\times \mathcal O_n\rightarrow \mathfrak g^*\), \((x_1,x_2,\cdots,x_n)\mapsto x_1+x_2+\cdots+x_n\). Assume that \(0\) is a regular value of \(\Phi\), and the quotient \(\mathcal M:=G\backslash\Phi^{-1}(0)\) is a smooth manifold. Then \(\mathcal M\) is canonically a symplectic manifold (the symplectic quotient of a Hamiltonian action). It is an interesting problem to calculate explicitly the volume of the compact symplectic manifold \(\mathcal M\).
When \(G=SU(2)\), the calculation is done by the second author in [T. Takakura, Adv. Studies in Pure Math. 34, 255–259 (2002; Zbl 1029.53091)]. In the paper under review, the authors carry out the calculation for \(G=SU(3)\), under certain restrictions on the coadjoint orbits.

MSC:

53D20 Momentum maps; symplectic reduction
22E46 Semisimple Lie groups and their representations

Citations:

Zbl 1029.53091
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] R. Abraham and J. E. Marsden, Foundations of Mechanics , 2nd. ed., Addison Wesley, 1978. · Zbl 0393.70001
[2] A. Borel and F. Hirzebruch, Characteristic classes and homogeneous spaces, I, II, III, Amer. J. Math., 80 (1958), 458-538; 81 (1959), 315-382; 82 (1960), 491-504. · Zbl 0097.36401 · doi:10.2307/2372795
[3] T. Bröcker and T. tom Dieck, Representations of compact Lie groups , Graduate Texts in Math. 98 , Springer, 1995. · Zbl 0874.22001
[4] W. Fulton, Young Tableaux , London Math. Soc. Student Texts 35 , Cambridge Univ. Press, 1997. · Zbl 0878.14034
[5] R. F. Goldin, The cohomology ring of weight varieties and polygon spaces, Adv. Math., 160 (2001), 175-204. · Zbl 1117.14051 · doi:10.1006/aima.2001.1984
[6] V. Guillemin and S. Sternberg, Geometric quantization and multiplicities of group representations, Invent. Math., 67 (1982), 515-538. · Zbl 0503.58018 · doi:10.1007/BF01398934
[7] V. Guillemin and S. Sternberg, Symplectic techniques in physics , Cambridge Univ. Press, 1990. · Zbl 0734.58005
[8] J-C. Hausmann and A. Knutson, Polygon spaces and Grassmannians, Enseign. Math., 43 (1997), 173-198. · Zbl 0888.58007
[9] J-C. Hausmann and A. Knutson, The cohomology ring of polygon spaces, Ann. Inst. Fourier, 48 (1998), 281-321. · Zbl 0903.14019 · doi:10.5802/aif.1619
[10] F. Hirzebruch, Topological methods in algebraic geometry , 3rd ed., Springer, 1966. · Zbl 0138.42001
[11] A. Huckleberry, Introduction to group actions in symplectic and complex geometry , Infinite Dimensional Kähler Manifolds, D.M.V. Seminar 31 , Birkhäuser, 2001. · Zbl 0998.53056
[12] L. C. Jeffrey, Extended moduli spaces of flat connections on Riemann surfaces, Math. Ann., 298 (1994), 667-692. · Zbl 0794.53017 · doi:10.1007/BF01459756
[13] L. Jeffrey and F. C. Kirwan, Localization for nonabelian group actions, Topology, 34 (1995), 291-327. · Zbl 0833.55009 · doi:10.1016/0040-9383(94)00028-J
[14] Y. Kamiyama and M. Tezuka, Symplectic volume of the moduli space of spatial polygons, J. Math. Kyoto Univ., 39 (1999), 557-575. · Zbl 0982.53070
[15] V. T. Khoi, On the symplectic volumes of the moduli space of Spherical and Euclidean polygons, Kodai Math. J., 28 (2005), 199-208. · Zbl 1104.53083 · doi:10.2996/kmj/1111588046
[16] A. A. Kirillov, Lectures on the Orbit Method , Graduate Studies in Math. 64 , Amer. Math. Soc., 2004. · Zbl 1229.22003
[17] F. C. Kirwan, Cohomology of quotients in symplectic and algebraic geometry , Mathematical Notes 31 , Princeton Univ. Press, 1984. · Zbl 0553.14020
[18] B. Kostant, Quantization and unitary representations I: Prequantization , Lecture Notes in Math. 170 , 87-207, Springer, 1970. · Zbl 0223.53028 · doi:10.1007/BFb0079068
[19] K. Liu, Heat kernel and moduli spaces II, Math. Res. Lett., 4 (1997), 569-588. · Zbl 0886.58013 · doi:10.4310/MRL.1997.v4.n4.a12
[20] S. K. Martin, Transversality theory, cobordisms, and invariants of symplectic quotients, math.SG/0001001.
[21] E. Meinrenken, Symplectic surgery and the Spin\(^c\)-Dirac operator, Adv. Math., 134 (1998), 240-277. · Zbl 0929.53045 · doi:10.1006/aima.1997.1701
[22] E. Meinrenken and C. Woodward, Moduli spaces of flat connections on \(2\)-manifolds, cobordism, and Witten’s volume formulas, Progr. Math., 172 , 271-295, Birkhäuser, 1999. · Zbl 1037.53058 · doi:10.1007/978-1-4612-1770-1_12
[23] D. Mumford, J. Fogarty and F. Kirwan, Geometric Invariant Theory , 3rd ed., Springer, 1994. · Zbl 0797.14004
[24] T. Suzuki and T. Takakura, Asymptotic dimension of invariant subspace in tensor product representation of compact Lie group, in, preparation. · Zbl 1179.22016 · doi:10.2969/jmsj/06130921
[25] T. Takakura, A note on the symplectic volume of the moduli space of spatial polygons, Advanced Studies in Pure Mathematics, 34 (2002), 255 -259. · Zbl 1029.53091
[26] T. Takakura, Intersection theory on symplectic quotients of products of spheres, Internat. J. of Math., 12 (2001), 97-111. · Zbl 1110.53309 · doi:10.1142/S0129167X01000678
[27] T. Takakura, Hamiltonian group actions and equivariant indices, K-Monographs in Math., 7 (2002), 217-229. · Zbl 1030.53083
[28] E. T. Whittaker and G. N. Watson, A course of modern analysis , 4th ed. reprinted, Cambridge Univ. Press, 2000. · JFM 45.0433.02
[29] E. Witten, On Quantum Gauge Theories in Two Dimensions, Commun. Math. Phys., 141 (1991), 153-209. · Zbl 0762.53063 · doi:10.1007/BF02100009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.