×

Global dissipativity and exponential synchronization of mixed time-varying delays neural networks with discontinuous activations. (English) Zbl 07446863

Summary: In this paper, the matters of dissipativity and synchronization for non-autonomous Hopfield neural networks with discontinuous activations are investigated. Firstly, under the framework of extending Filippov differential inclusion theory, several effective new criteria are derived. The global dissipativity of Filippov solution to neural networks is proved by using generalized Halanay inequality and matrix measure method. Secondly, the global exponential synchronization of the addressed network drive system and the response system is realized by utilizing inequality and some analysis techniques and designing the discontinuous state feedback controller. Finally, several numerical examples are given to verify the validity of the theoretical results.

MSC:

34-XX Ordinary differential equations
92-XX Biology and other natural sciences
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] M. Forti, P. Nistri, and D. Papini, “Global exponential stability and global convergence in finite time of delayed neural networks with infinite gain,” IEEE Trans. Neural Netw., vol. 16, no. 6, pp. 1449-1463, 2015.
[2] X. Liu, T. Chen, J. Cao, and W. Lu, “Dissipativity and quasi-synchronization for neural networks with discontinuous activations and parameter mismatches,” Neural Netw., vol. 24, no. 10, pp. 1013-1021, 2011, doi:10.1016/j.neunet.2011.06.005. · Zbl 1264.93048 · doi:10.1016/j.neunet.2011.06.005
[3] M. Forti and P. Nistri, “Global convergence of neural networks with discontinuous neuron activations,” IEEE Trans. Circuits Syst. I Fundam. Theory Appl, vol. 50, no. 11, pp. 1421-1435, 2003. · Zbl 1368.34024
[4] J. Liu, X. Liu, and W. C. Xie, “Global convergence of neural networks with mixed time-varying delays and discontinuous neuron activations,” Inf. Sci., vol. 183, no. 1, pp. 92-105, 2012, doi:10.1016/j.ins.2011.08.021. · Zbl 1245.93118 · doi:10.1016/j.ins.2011.08.021
[5] W. Lu and T. Chen, “Dynamical behaviors of Cohen-Grossberg neural networks with discontinuous activation functions,” Neural Netw., vol. 18, no. 3, pp. 231-242, 2005, doi:10.1016/j.neunet.2004.09.004. · Zbl 1078.68127 · doi:10.1016/j.neunet.2004.09.004
[6] X. Liu, and J. Cao, “On periodic solutions of neural networks via differential inclusions,” Neural Netw., vol. 22, no. 4, pp. 329-334, 2009, doi:10.1016/j.neunet.2008.11.003. · Zbl 1335.93058 · doi:10.1016/j.neunet.2008.11.003
[7] H. Wu, “Stability analysis for periodic solution of neural networks with discontinuous neuron activations,” Nonlinear Anal. Real World Appl., vol. 10, no. 3, pp. 1717-1729, 2012, doi:10.1016/j.nonrwa.2008.02.024. · Zbl 1160.92004 · doi:10.1016/j.nonrwa.2008.02.024
[8] D. Papini and V. Taddei, “Global exponential stability of the periodic solution of a delayed neural network with discontinuous activations,” Phys. Lett. A, vol. 343, no. 1-3, pp. 117-128, 2005, doi:10.1016/j.physleta.2005.06.015. · Zbl 1194.34131 · doi:10.1016/j.physleta.2005.06.015
[9] D. Wang and L. Huang, “Periodicity and global exponential stability of generalized Cohen-Grossberg neural networks with discontinuous activations and mixed delays,” Neural Netw., vol. 51, no. 3, pp. 80-95, 2014, doi:10.1016/j.neunet.2013.12.005. · Zbl 1309.34124 · doi:10.1016/j.neunet.2013.12.005
[10] W. Lu and T. Chen, “Almost periodic dynamics of a class of delayed neural networks with discontinuous activations,” Neural Comput., vol. 20, no. 4, pp. 1065-1090, 2008, doi:10.1162/neco.2008.10-06-364. · Zbl 1146.68422 · doi:10.1162/neco.2008.10-06-364
[11] S. Qin, X. Xue, and P. Wang, “Global exponential stability of almost periodic solution of delayed neural networks with discontinuous activations,” Inf. Sci., vol. 220, no. 1, pp. 367-378, 2013, doi:10.1016/j.ins.2012.07.040. · Zbl 1291.92015 · doi:10.1016/j.ins.2012.07.040
[12] D. Wang and L. Huang, “Almost periodic dynamical behaviors for generalized Cohen-Grossberg neural networks with discontinuous activations via differential inclusions,” Commun. Nonlinear Sci. Numer. Simul., vol. 19, no. 10, pp. 3857-3879, 2014, doi:10.1016/j.cnsns.2014.02.016. · Zbl 1470.34076 · doi:10.1016/j.cnsns.2014.02.016
[13] D. Wang, L. Huang, and L. Tang, “Synchronization criteria for discontinuous neural networks with mixed delays via functional differential inclusions,” IEEE Trans. Neural Netw. Learn. Syst., to be published, pp. 2688327, 2017.
[14] X. Yang and J. Cao, “Exponential synchronization of delayed neural networks with discontinuous activations,” IEEE Trans. circults syst. I: regular papers, vol. 60, no. 9, pp. 2431-2439, 2013. · Zbl 1468.92017
[15] L. Duan and L. Huang, “Global dissipativity of mixed time-varying delayed neural networks with discontinuous activations,” Commun. Nonlinear Sci. Numer. Simulat., vol. 19, no. 12, pp. 4122-4134, 2014, doi:10.1016/j.cnsns.2014.03.024. · Zbl 1470.92021 · doi:10.1016/j.cnsns.2014.03.024
[16] J. Liu, X. Liu, and W. Xie, “Global convergence of neural networks with mixed time-varying delays and discontinuous neuron activations,” Inf. Sci., vol. 183, no. 1, pp. 92-105, 2012, doi:10.1016/j.ins.2011.08.021. · Zbl 1245.93118 · doi:10.1016/j.ins.2011.08.021
[17] K. Liu, E. Fridman, K. H. Johansson, and Y. Xia, “Generalized Jensen inequalities with application to stability analysis of systems with distributed delays over infinite time-horizons,” Automatica, vol. 69, pp. 222-231, 2016, doi:10.1016/j.automatica.2016.02.038. · Zbl 1338.93391 · doi:10.1016/j.automatica.2016.02.038
[18] Z. Cai, L. Huang, and L. Zhang, “New exponential synchronization criteria for time-varying delayed neural networks with discontinuous activations,” Neural Netw., vol. 65, pp. 105-114, 2015, doi:10.1016/j.neunet.2015.02.001. · Zbl 1398.34108 · doi:10.1016/j.neunet.2015.02.001
[19] X. Liao, K. W. Wong, and S. Yang, “Convergence dynamics of hybrid bidirectional associative memory neural networks with distributed delays,” Phy. Lett. A, vol. 316, no. 1, pp. 55-64, 2003, doi:10.1016/S0375-9601(03)01113-7. · Zbl 1038.92001 · doi:10.1016/S0375-9601(03)01113-7
[20] H. Zhao, “Global stability of bidirectional associative memory neural networks with distributed delays,” Phy. Lett. A, vol. 297, no. 3, pp. 182-190, 2002, doi:10.1016/S0375-9601(02)00434-6. · Zbl 0995.92002 · doi:10.1016/S0375-9601(02)00434-6
[21] J. Liu, X. Liu, and W. C. Xie, “Global convergence of neural networks with mixed time-varying delays and discontinuous neuron activations,” Inf. Sci., vol. 183, no. 1, pp. 92-105, 2012, doi:10.1016/j.ins.2011.08.021. · Zbl 1245.93118 · doi:10.1016/j.ins.2011.08.021
[22] S. Qin, X. Xue, and P. Wang, “Global exponential stability of almost periodic solution of delayed neural networks with discontinuous activations,” Inf. Sci., vol. 220, no. 1, pp. 367-378, 2013, doi:10.1016/j.ins.2012.07.040. · Zbl 1291.92015 · doi:10.1016/j.ins.2012.07.040
[23] X. Liao and K. W. Wong, “Global exponential stability of hybrid bidirectional associative memory neural networks with discrete delays,” Phy. Rev. E. Statistica, Nonlinear. Soft Matter Phy., vol. 67, no. 4, pp. 042901, 2003, doi:10.1103/PhysRevE.67.042901. · doi:10.1103/PhysRevE.67.042901
[24] X. Liao, K. W. Wong, and S. Yang, “Convergence dynamics of hybrid bidirectional associative memory neural networks with distributed delays,” Phy. Lett. A, vol. 316, no. 1, pp. 55-64, 2003, doi:10.1016/S0375-9601(03)01113-7. · Zbl 1038.92001 · doi:10.1016/S0375-9601(03)01113-7
[25] X. Yang, C. Li, X. Liao, D. J. Evans, and G. M. Megson, “Global exponential periodicity of a class of bidirectional associative memory networks with finite distributed delays,” Appl. Math. Comput., vol. 171, no. 1, pp. 108-121, 2005, doi:10.1016/j.amc.2005.01.029. · Zbl 1085.68141 · doi:10.1016/j.amc.2005.01.029
[26] X. Liu and J. Cao, “Synchronization control of discontinuous neural networks via approximation,” in Proceeding IEEE Chinese Control Decision Conference (CCDC), Xuzhou, China, IEEE, 2010, pp. 782-787.
[27] D. Wang, L. Huang, and L. Tang, “Dissipativity and synchronization of generalized BAM neural networks with multivariate discontinuous activations,” IEEE Trans. Actions on neural netw. learning syst., vol. 29, no. 8, pp. 3815-3827, 2018.
[28] Z. Cai and L. Huang, “Functional differential inclusions and dynamic behaviors for memristor-based BAM neural networks with time-varying delays,” Commun. Nonlinear Sci. Numer. Simul, vol. 19, no. 5, pp. 1279-1300, 2014, doi:10.1016/j.cnsns.2013.09.004. · Zbl 1457.34103 · doi:10.1016/j.cnsns.2013.09.004
[29] H. Li, C. Li, W. Zhang, and J. Xu, “Global dissipativity of inertial neural networks with proportional delay via new generalized halanay inequalities,” Neural Process Lett., vol. 48, no. 3, pp. 1279-1300, 2018, doi:10.1007/s11063-018-9788-6. · doi:10.1007/s11063-018-9788-6
[30] Q. Song and T. Huang, “Stabilization and synchronization of chaotic systems with mixed time-varying delays via intermittent control with non-fixed both control period and control width,” Neurocomputing, vol. 154, pp. 61-69, 2015, doi:10.1016/j.neucom.2014.12.019. · doi:10.1016/j.neucom.2014.12.019
[31] A. Wu, Z. Zeng, X. Zhu, and J. Zhang, “Exponential synchronization of memristor-based recurrent neural networks with time delays,” Neurocomputing, vol. 74, no. 17, pp. 3043-3050, 2011, doi:10.1016/j.neucom.2011.04.016. · doi:10.1016/j.neucom.2011.04.016
[32] H. Zeng, Y. He, P. Shi, M. Wu, and S. Xiao, “Dissipativity analysis of neural networks with time-varying delays,” Neurocomputing, vol. 168, pp. 741-746, 2015, doi:10.1016/j.neucom.2015.05.050. · doi:10.1016/j.neucom.2015.05.050
[33] M. Jiang, J. Mu, and D. Huang, “Globally exponential stability and dissipativity for nonautonomous neural networks with mixed time-varying delays,” Neurocomputing, vol. 205, pp. 421-429, 2016, doi:10.1016/j.neucom.2016.04.025. · doi:10.1016/j.neucom.2016.04.025
[34] M. Vidyasagar, Nolinear System Analysis, Englewood Cliffs, NJ, USA, Pretice-Hall, 1993. · Zbl 0900.93132
[35] L. Duan and L. Huang, “Global dissipativity of mixed time-varying delayed neural networks with discontinuous activations,” Commun. Nonlinear Sci. Numer. Simulat., vol. 19, no. 12, pp. 4122-4134, 2014, doi:10.1016/j.cnsns.2014.03.024. · Zbl 1470.92021 · doi:10.1016/j.cnsns.2014.03.024
[36] L. Wang, L. Zhang, and X. Ding, “Global dissipativity of a class of BAM neural networks with both time-varying and continuously distributed delays,” Neurocomputing, vol. 152, pp. 250-260, 2015, doi:10.1016/j.neucom.2014.10.070. · doi:10.1016/j.neucom.2014.10.070
[37] B. Liu, W. Lu, and T. Chen, “Stability analysis of some delay differential inequalities with small time delays and its applications,” New. Netw., vol. 33, no. 9, pp. 1-6, 2012, doi:10.1016/j.neunet.2012.03.009. · Zbl 1276.34066 · doi:10.1016/j.neunet.2012.03.009
[38] J. Liang, Z. Wang, and X. Liu, “On synchronization of coupled delayed neural networks,” Recent Adv. Nonlinear Dyn. Synchronization, vol. 254, pp. 117-149, 2009, doi:10.1007/978-3-642-04227-0_5. · doi:10.1007/978-3-642-04227-0_5
[39] W. H. Chen, Z. Wang, and X. Lu, “On sampled-data control for masterslave synchronization of chaotic Lure systems,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 89, no. 8, pp. 515-519, 2012.
[40] J. Lu, D. W. C. Ho, and Z. Wang, “Pinning stabilization of linearly coupled stochastic neural networks via minimum number of controllers,” IEEE Trans. Neural Netw., vol. 20, no. 10, pp. 1617-1629, 2009.
[41] F. H. Clarke, Optimization and Nonsmooth Analysis, New York, Wiley, 1983. · Zbl 0582.49001
[42] A. F. Filippov, “Differential equations with discontinuous right-hand side,” Matematicheskii Sbornik, vol. 93, no. 1, pp. 99-128, 1960. · Zbl 0138.32204
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.